MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Features 1/4-Inch Color CMOS NTSC/PAL Digital Image SOC with Distortion Correction and Overlay Processor MT9V126 Datasheet, Rev. J For the latest datasheet, please visit www.onsemi.com Features Table 1: * Low-power CMOS image sensor with integrated image flow processor (IFP) and video encoder * 1/4-inch optical format, VGA resolution (640H x 480V) * 2.5% additional columns and rows to compensate for lens alignment tolerances * Integrated lens distortion correction * Overlay generator for dynamic bitmap overlay * Integrated video encoder for NTSC/PAL with overlay capability and 10-bit I-DAC * Integrated microcontroller for flexibility * On-chip image flow processor performs sophisticated processing, such as color recovery and correction, sharpening, gamma, lens shading correction, on-the-fly defect correction, auto white balancing, and auto exposure * Auto black level calibration * 10-bit, on-chip analog-to-digital converter (ADC) * Internal master clock generated by on-chip phaselocked loop (PLL) * Two-wire serial programming interface * Interface to low-cost Flash through SPI bus * High-level host command interface * Stand alone operation support * Comprehensive tool support for overlay generation and lens correction setup * Development system with DevWare * Overlay generation and compilation tools Applications * Automotive rearview camera and side mirror * Blind spot and surround view * Key Parameters Parameter Typical Value Pixel size and type 5.6 m x 5.6 m active pinnedphotodiode with high-sensitivity mode for low-light conditions Sensor format 680H x 512V (includes 2.5% of rows and columns for lens alignment) NTSC output 720H x 480V PAL output 720H x 576V Imaging area Total array size: 3.584 mm x 2.688 mm Optical format 1/4-inch Frame rate 50/60 fields/sec Sensor scan mode Progressive scan Color filter array RGB standard Bayer Shutter type Electronic rolling shutter (ERS) Automatic Functions Exposure, white balance, black level offset correction, flicker avoidance, color saturation control, on-the-fly defect correction, aperture correction Programmable Controls Exposure, white balance, horizontal and vertical blanking, color, sharpness, gamma correction, lens shading correction, horizontal and vertical image flip, zoom, windowing, sampling rates, GPIO control Lens distortion correction1 Maximum lens distortion supported up to 25% Flexible algorithm that can be calibrated for many wide-angle lenses through software tools Perspective correction Key parameters are continued on next page. See details of new features on page 3. See "Ordering Information" on page 3. MT9V126_DS Rev. J Pub. 5/15 EN 1 (c)Semiconductor Components Industries, LLC 2015, MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Applications Table 2: Key Parameters (continued) Parameter Typical Value Overlay Support1 Utilizes SPI interface to load overlay data from external flash/EEPROM memory with the following features: *Overlay Size 360 x 480 pixel rendered into 720 x 480 pixel display format *Up to four (4) overlays may be blended simultaneously *Selectable readout: Rotating order user selected *Dynamic scenes by loading pre-rendered frames from external memory *Palette of 32 colors out of 64,000 *8 colors per bitmap *Blend factor dynamically programmable for smooth transitions *Fast Update rate of up to 30 fps *Every bitmap object has independent x/y position *Statistic Engine to calibrate optical alignment *Number Generator External Overlay Processing Support Digital input to on-chip NTSC encoder allows for external overlay, processing by a DSP, or FPGA Windowing Programmable to any size Max analog gain 0.5-16x ADC 10-bit, on-chip Output interface Analog composite video out, single-ended or differential; 8-, 10-bit parallel digital output Output data formats1 Digital: Raw Bayer 8-,10-bit, CCIR656, 565RGB, 555RGB, 444RGB Parallel: 27 MB/s NTSC: 60 fields/sec Data rate PAL: 50 fields/sec Two-wire I/F for register interface plus high-level command exchange. SPI port to interface to external memory to load overlay data, register settings, or firmware extensions. Control interface Input clock for PLL 27 MHz SPI Clock Frequencies 4.5 - 9.0 - 18 MHz, programmable Analog: 2.8 V 5% Core: 1.8 V 5% Supply voltage IO: 2.8V 5% Full resolution at 60 fps: <350mW2 Power consumption Package 63-BGA, 9mm x 9mm, 1mm pin pitch Operating: -40 C to 105C Ambient temperature Functional: -40C to +85C Storage: -50C to +150C Dark Current < 200e/s at 60C with a gain of 1 Column Fixed pattern noise Row Responsivity < 2% < 2% 11.9 V/lux-s at 550nm Signal to noise ratio (S/N) 45 dB Pixel dynamic range 74.6 dB Notes: MT9V126_DS Rev. J Pub. 5/15 EN 1. Lens distortion correction and graphical overlay is available only in CCIR656 output format. 2. Analog output enabled; parallel output disabled. 2 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor New Features New Features Integrated Lens Distortion Correction * Eliminates expensive DSP for image correction * Can be calibrated for wide-angle lenses of up to 180 degree horizontal FOV (field of view) * Distortion correction for up to 25% distortion in FOV * Perspective correction - View from elevated angle Integrated Video Encoder for PAL/NTSC with Overlay Capability * * * * Composite analog output (NTSC/PAL) 8-bit parallel digital output ITU-R BT.656 format Raw Bayer format Digital input to on-chip NTSC encoder to allow additional processing functions by external DSP or FPGA On-Chip Overlay Generator * * * * * * Static and dynamic overlay graphics with four overlay planes plus number plane Support for serial SPI memory up to 16 megabytes Number generator Overlay blending and x/y positioning Overlay position adjustment and statistics engine to calibrate overlay Overlay support utilizes SPI interface to load overlay data from external Serial Flash/EEPROM to support the following features: - Overlay size 360 x 480 pixel rendered into 720 x 480 pixel display format - Up to four overlays may be blended simultaneously - Selectable readout: rotating order user selected - Dynamic scenes by loading pre-rendered frames from external memory - Palette of 32 colors out of 64,000 - Eight colors per bitmap - Blend factor dynamically programmable for smooth transitions - Fast update rate of up to 30 fps - Every bitmap object has independent x/y position - Statistics engine to calibrate optical alignment - External overlay processing supports digital input to on-chip NTSC encoder; this enables external overlay processing by a DSP or FPGA Ordering Information Table 3: Available Part Numbers Part Number Product Description Orderable Product Attribute Description MT9V126D00XTCK22BC1-200 VGA 1/4" SOC Die Sales, 200m Thickness MT9V126IA3XTC-DP VGA 1/4" SOC Dry Pack with Protective Film MT9V126IA3XTC-DR VGA 1/4" SOC Dry Pack without Protective Film MT9V126IA3XTC-DR1 VGA 1/4" SOC Dry Pack Single Tray without Protective Film MT9V126_DS Rev. J Pub. 5/15 EN 3 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Ordering Information Table 3: Available Part Numbers Part Number Product Description Orderable Product Attribute Description MT9V126IA3XTC-TP VGA 1/4" SOC Tape & Reel with Protective Film MT9V126IA3XTC-TR VGA 1/4" SOC Tape & Reel without Protective Film MT9V126_DS Rev. J Pub. 5/15 EN 4 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Table of Contents Table of Contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 New Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Pin Descriptions and Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 SOC Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Sensor Pixel Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Usage Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 External Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Multicamera Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 External Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Slave Two-Wire Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Integrated Lens Distortion Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Overlay Capability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 Serial Memory Partition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 Overlay Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 Overlay Character Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 Modes and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 Spectral Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 MT9V126_DS Rev. J Pub. 5/15 EN 5 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor List of Figures List of Figures Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Figure 12: Figure 13: Figure 14: Figure 15: Figure 16: Figure 17: Figure 18: Figure 19: Figure 20: Figure 21: Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Figure 28: Figure 29: Figure 30: Figure 31: Figure 32: Figure 33: Figure 34: Figure 35: Figure 36: Figure 37: Figure 38: Figure 39: Figure 40: Figure 41: Figure 42: Figure 43: Figure 44: Figure 45: Figure 46: Figure 47: Figure 48: Figure 49: Figure 50: Figure 51: Figure 52: Figure 53: Figure 54: Figure 55: Figure 56: Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 System Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Using a Crystal Instead of an External Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Sensor Core Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Pixel Array Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Image Capture Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Sensor Pixel Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Pixel Color Pattern Detail (top right corner) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Spatial Illustration of Image Readout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Color Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Color Bar Test Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Color Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Gamma Correction Curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Auto-Config Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Flash Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Usage Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Host Mode with Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Host Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 External Overlay System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Multicamera System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 External Signal Processing Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Power-Up Sequence - Configuration Options Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Interface Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Single READ from Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 Single Read from Current Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 Sequential READ, Start from Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Sequential READ, Start from Current Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Single WRITE to Random Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Sequential WRITE, Start at Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Barrel Distortion Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Vertical Perspective Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Conversion Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Overlay Data Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 Memory Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 Overlay Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 Internal Block Diagram Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 Example of Character Descriptor 0 Stored in ROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58 Full Character Set for Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 Single-Ended Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60 Differential Connection--Grounded Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 CCIR656 8-Bit Parallel Interface Format for 525/60 (625/50) Video Systems . . . . . . . . . . . . . . . . . . . .61 Typical CCIR656 Vertical Blanking Intervals for 525/60 Video System. . . . . . . . . . . . . . . . . . . . . . . . . .62 Typical CCIR656 Vertical Blanking Intervals for 625/50 Video System. . . . . . . . . . . . . . . . . . . . . . . . . .63 Parallel Input Data Timing Waveform Using DIN_CLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Primary Clock Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 Typical I/O Equivalent Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 NTSC Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 Serial Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 Digital Output I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Slew Rate Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Configuration Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Power Down Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 FRAME_SYNC to FRAME_VALID/LINE_VALID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Reset to SPI Access Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Reset to Serial Access Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 MT9V126_DS Rev. J Pub. 5/15 EN 6 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor List of Figures Figure 57: Figure 58: Figure 59: Figure 60: Figure 61: Figure 62: Figure 63: Figure 64: Reset to AE/AWB Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 SPI Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 Video Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 Equivalent Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 V Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 Two-Wire Serial Bus Timing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 Quantum Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 63-Ball iBGA Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 MT9V126_DS Rev. J Pub. 5/15 EN 7 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor List of Tables List of Tables Table 1: Table 2: Table 3: Table 4: Table 5: Table 6: Table 7: Table 8: Table 9: Table 10: Table 11: Table 12: Table 13: Table 14: Table 15: Table 16: Table 17: Table 18: Table 19: Table 20: Table 21: Table 22: Table 23: Table 24: Table 25: Table 26: Table 27: Table 28: Table 29: Table 30: Table 31: Table 32: Table 33: Table 34: Table 35: Table 36: Table 37: Table 38: Table 39: Table 40: Table 41: Table 42: Table 43: Table 44: Table 45: Table 46: Table 47: Table 48: Table 49: Table 50: Table 51: Key Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Key Parameters (continued). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Available Part Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Reset/Default State of Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 EIA Color Bars (NTSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 EBU Color Bars (PAL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 NTSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 PAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 YCbCr Output Data Ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 RGB Ordering in Default Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 2-Byte Bayer Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 SPI Flash Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 SPI Commands Supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 GPIO Bit Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 System Manager Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 Overlay Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 Dewarp Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 GPIO Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Flash Manager Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Sequencer Host Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 TX Manager Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Two-Wire Interface ID Address Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Lens Correction Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Transfer Time Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 Character Generator Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59 Field, Vertical Blanking, EAV, and SAV States 525/60 Video System . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 Field, Vertical Blanking, EAV, and SAV States for 625/50 Video System . . . . . . . . . . . . . . . . . . . . . . . . .63 Parallel Input Data Timing Values Using DIN_CLK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 Output Data Ordering in DOUT RGB Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 Output Data Ordering in Sensor Stand-Alone Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 Parallel Digital Output I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Slew Rate for PIXCLK and DOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Configuration Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 Power Down Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 FRAME_SYNC to FRAME_VALID/LINE_VALID Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 RESET_BAR Delay Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 SPI Data Setup and Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 Electrical Characteristics and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 Video DAC Electrical Characteristics-Single-Ended Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 Video DAC Electrical Characteristics-Differential Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 Digital I/O Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Power Consumption - Condition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 Power Consumption - Condition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 NTSC Signal Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Video Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 Equivalent Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 V Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 MT9V126_DS Rev. J Pub. 5/15 EN 8 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor List of Tables Table 52: Two-Wire Serial Bus Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 MT9V126_DS Rev. J Pub. 5/15 EN 9 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor General Description General Description The ON Semiconductor MT9V126 is a VGA-format, single-chip CMOS active-pixel digital image sensor for automotive applications. It captures high-quality color images at VGA resolution and outputs NTSC or PAL interlaced composite video. The VGA CMOS image sensor features ON Semiconductor's breakthrough low-noise CMOS imaging technology that achieves near-CCD image quality (based on signal-tonoise ratio and low-light sensitivity) while maintaining the inherent size, cost, low power, and integration advantages of ON Semiconductor's advanced active pixel CMOS process technology. The MT9V126 is a complete camera-on-a-chip. It incorporates sophisticated camera functions on-chip and is programmable through a simple two-wire serial interface or by an attached SPI Flash memory that contains setup information that may be loaded automatically at startup. The MT9V126 performs sophisticated processing functions including color recovery, color correction, sharpening, programmable gamma correction, auto black reference clamping, auto exposure, 50Hz/60Hz flicker avoidance, lens shading correction, auto white balance (AWB), and on-the-fly defect identification and correction. The MT9V126 outputs interlaced-scan images at 30 or 25 fps, supporting both NTSC and PAL video formats. The image data can be output on one or two output ports: * Composite analog video (single-ended and differential output support) * Parallel 8-, 10-bit digital The integrated lens correction and overlay generation for steering guidance eliminates expensive overlay processing that is usually required by an external DSP; this significantly reduces overall costs. MT9V126_DS Rev. J Pub. 5/15 EN 10 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Architecture Architecture Internal Block Diagram Figure 1: SPI 4 Internal Block Diagram 2. 8V Two-Wire I/F 1 .8 V 2 Camera Control SPI & 2W I/F Interface AWB AE 8 Image Flow Processor 1/4" VGA ROI @ 60 frames per sec. 10 Color & Gamma Correction Color Space Conversion Edge Enhancement Lens correction 640 x 480 Active Array Overlay Graphics Generation VideoEncoder DAC Note: MT9V126_DS Rev. J Pub. 5/15 EN Optional BT -656 Input 8 BT -656 NTSC / PAL The active array is smaller than the sensor array. 11 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor System Block Diagram System Block Diagram The system block diagram will depend on the application. The system block diagram in Figure 2 shows all components; optional peripheral components are highlighted. Control information will be received by a microcontroller through the automotive bus, such as LIN or CAN bus, to communicate with the MT9V126 through its two-wire serial bus. Optional components will vary by application. For further details, see the MT9V126 Register and Variable Reference. Figure 2: System Block Diagram 27 MHz EXTCLK XTAL RESET_BAR FRAME _SYNC System Bus CAN /LIN C Serial Data Flash 10Kb - 16MB SPI 2WIRE I/F LP Filter DAC _POS 4.7k DAC _REF Composite Video PAL /NTSC DAC _NEG 75 VDD_DAC (2.8V) . VDD_PLL (2.8V) Optional VDD_IO (2.8V) . 2.8V VAA _PIX (2.8V ) VAA (2.8V) LDO CCIR 656/ or GPI VDD (1.8V ) DOUT[7:0] DIN [7:0] DOUT_LSB0,1 DIN _CLK CCIR 656/ GPO PIXCLK FRAME_VALID LINE_VALID MT9V126_DS Rev. J Pub. 5/15 EN 12 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor System Block Diagram Crystal Usage As an alternative to using an external oscillator, a fundamental 27 MHz crystal may be connected between EXTCLK and XTAL. Two small loading capacitors of 15-22pF of NPO dielectric should be added as shown in Figure 3. ON Semiconductor does not recommend using the crystal option for automotive applications above 85C. A crystal oscillator with temperature compensation is recommended. Figure 3: Using a Crystal Instead of an External Oscillator Sensor 18 pF - NPO EXTCLK 27.000 MHz XTAL 18pF - NPO When using Xtal as the clock source, the internal inverter circuit has a 100K bias resistor in parallel to Xtal, which can be connected or disconnected by register 0x0014 bit[14]. The clockin_bias_en bit is set to 1 by default. MT9V126_DS Rev. J Pub. 5/15 EN 13 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Pin Descriptions and Assignments Pin Descriptions and Assignments Table 4: Pin Descriptions Pin Number Pin Name Type Description Clock and Reset B1 EXTCLK Input Master input clock (27MHz): This can either be a square-wave generated from an oscillator (in which case the XTAL input must be left unconnected) or connected directly to a crystal. B2 XTAL Output C1 RESET_BAR Input Asynchronous active-low reset: When asserted, the device will return all interfaces to their reset state. When released, the device will initiate the boot sequence. C2 FRAME_SYNC Input This input can be used to set the output timing of the MT9V126 to a fixed point in the frame. The input buffer associated with this input is permanently enabled. This signal should be connected to GND if not used. If EXTCLK is connected to one pin of a crystal, this signal is connected to the other pin; otherwise this signal must be left unconnected. Register Interface G3 H3 H2 SCLK SDATA SADDR Input Input/OD Input H5 SPI_SCLK Output These two signals implement serial communications protocol for access to the internal registers and variables. This signal controls the device ID that will respond to serial communication commands. Two-wire serial interface device ID selection: 0: 0x90 1: 0xBA SPI Interface Clock output for interfacing to an external SPI memory such as Flash/ EEPROM. Tristate when RESET_BAR is asserted. G5 SPI_SDI Input H4 SPI_SDO Output Data in from SPI device. This signal has an internal pull-up resistor. Data out to SPI device. Tristate when RESET_BAR is asserted. G4 SPI_CS_N Output Chip selects to SPI device. Tristated when RESET_BAR is asserted. D1 DIN_CLK Input Pixel clock input: Data on DIN[7:0] are sampled at the rising or falling edge of this clock. (Alternatively, an internal sampling clock may be used.) H1, G1, F1, G2, F2, E1, E2, D2 DIN[7:0] Input Data coming in on this interface is passed through the overlay blender and to the video encoder output. The input buffers associated with inputs 7 to 0 are powered down by default. This allows these signals to be left unconnected if not required. These inputs can also be used as general purpose inputs. E7 E6 E8 C7, B6, C8, B7, B8, A6, A7, A8 FRAME_VALID LINE_VALID PIXCLK DOUT[7:0] Input/Output Input/Output Output Output (Parallel) Pixel Data Input (Parallel) Pixel Data Output MT9V126_DS Rev. J Pub. 5/15 EN Pixel data from the MT9V126 can be routed out on this interface and processed externally. To save power, these signals are driven to a constant logic level unless the parallel pixel data output or alternate (GPIO) function is enabled for these pins. For more information see Table 16 on page 37. This interface is disabled by default. The slew rate of these outputs is programmable. These signals can also be used as general purpose input/outputs. 14 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Pin Descriptions and Assignments Table 4: Pin Descriptions (continued) Pin Number Pin Name Type Description D7 D8 DOUT_LSB1 DOUT_LSB0 Input/Output Input/Output When the sensor core is running in bypass mode, it will generate 10 bits of output data per pixel. These two pins make the two LSB of pixel data available externally. Leave unconnected if not used. To save power, these signals are driven to a constant logic level unless the sensor core is running in bypass mode or the alternate function is enabled for these pins. For more information see Table 16, "GPIO Bit Descriptions," on page 37. This interface is disabled by default. The slew rate of these outputs is programmable. Composite Video Output B3 DAC_POS Output Positive video DAC output in differential mode. Video DAC output in single-ended mode. This interface is enabled by default using NTSC/PAL signalling. For applications where composite video output is not required, the video DAC can be placed in a power-down state under software control. A4 DAC_NEG Output Negative video DAC output in differential mode. Connect to AGND in singleended mode. A2 DAC_REF Output External reference resistor for the video DAC. Manufacturing Test Interface D6 TDI Input JTAG Test pin (Reserved for Test Mode) C6 TDO Output JTAG Test pin (Reserved for Test Mode) F3 TMS Input JTAG Test pin (Reserved for Test Mode) F4 TCK Input JTAG Test pin (Reserved for Test Mode) F5 TRST_N Input Connect to GND. F6 ATEST1 Input Analog test input. Connect to GND in normal operation. G6 ATEST2 Input Analog test input. Connect to GND in normal operation. Power C3, D3, E3 VDD Supply Supply for VDD core: 1.8V nominal. C5, D5, E5 VDD_IO Supply Supply for digital IOs: 2.8V nominal. A5 VDD_DAC Supply Supply for video DAC: 2.8V nominal. B5 VDD_PLL Supply Supply for PLL: 2.8V nominal. G7, G8 VAA Supply Analog power: 2.8V nominal. F7, F8 VAA_PIX Supply Analog pixel array power: 2.8V nominal. Must be at same voltage potential as VAA. A3 GND_DAC Supply Video DAC ground B4, C4, D4, E4 DGND Supply Digital ground. H6, H7, H8 AGND Supply Analog ground. MT9V126_DS Rev. J Pub. 5/15 EN 15 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Pin Descriptions and Assignments Pin Assignments Pin 1 is not populated with a ball. That allows the device to be identified by an additional marking. Table 5: A B C D E F G H Pin Assignments 1 2 3 4 5 6 7 8 EXTCLK RESET_BAR DIN_CLK DIN2 DIN5 DIN6 DIN7 DAC_REF XTAL FRAME_SYNC DIN0 DIN1 DIN3 DIN4 SADDR GND_DAC DAC_POS VDD VDD VDD TMS SCLK SDATA DAC_NEG GND GND GND GND TCK SPI_CS_N SPI_SDO VDD_DAC VDD_PLL VDD_IO VDD_IO VDD_IO TRST_N SPI_SDI SPI_SCLK DOUT2 DOUT6 TDO TDI LINE_VALID ATEST1 ATEST2 AGND DOUT1 DOUT4 DOUT7 DOUT_LSB1 FRAME_VALID VAA_PIX VAA AGND DOUT0 DOUT3 DOUT5 DOUT_LSB0 PIXCLK VAA_PIX VAA AGND Table 6: Reset/Default State of Interfaces Name Reset State Default State Notes EXTCLK Clock running or stopped Clock running Input XTAL N/A N/A Input RESET_BAR Asserted De-asserted Input SCLK N/A N/A SDATA High impedance High impedance SADDR N/A N/A SPI_SCLK High impedance. Driven, logic 0 Output. Output enable is R0x0032[9]. SPI_SDI Internal pull-up enabled. Internal pull-up enabled Input. Internal pull-up is permanently enabled. Input. Must always be driven to a valid logic level. Input/Output. A valid logic level should be established by pull-up resistor. Input. Must always be driven to a valid logic level. Must be permanently tied to VDD_IO or GND. SPI_SDO High impedance Driven, logic 0 Output enable is R0x0032[9]. SPI_CS_N High impedance Driven, logic 1 Output enable is R0x0032[9]. DINCLK DIN7 DIN6 DIN5 DIN4 DIN3 DIN2 DIN1 DIN0 Input buffer powered down Input buffer powered down MT9V126_DS Rev. J Pub. 5/15 EN Input. This interface is disabled by default, and the input buffers are powered down. If this interface is not required, these pins can be left unconnected (floating). 16 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Pin Descriptions and Assignments Table 6: Reset/Default State of Interfaces (continued) Name Reset State Default State FRAME_VALID LINE_VALID High impedance High impedance PIXCLK DOUT7 DOUT6 DOUT5 DOUT4 DOUT3 DOUT2 DOUT1 DOUT0 DOUT_LSB1 DOUT_LSB0 High impedance Driven, logic 0 Notes Input/Output. This interface disabled by default. Input buffers (used for GPIO function) powered down by default, so these pins can be left unconnected (floating). After reset, these pins are powered up, sampled, then powered down again as part of the autoconfiguration mechanism. See Note 2. Output. This interface disabled by default. See Note 1. High impedance High impedance High impedance Driven, logic 0 Input/Output. This interface disabled by default. Input buffers (used for GPIO function) powered down by default, so these pins can be left unconnected (floating). After reset, these pins are powered-up, sampled, then powered down again as part of the autoconfiguration mechanism. DAC_POS DAC_NEG DAC_REF TDI High impedance Driven Output. Interface disabled by hardware reset and enabled by default when the device starts streaming. Internal pull-up enabled Internal pull-up enabled Input. Internal pull-up means that this pin can be left unconnected (floating). TDO High impedance High impedance Output. Driven only during appropriate parts of the JTAG shifter sequence. TMS Internal pull-up enabled Internal pull-up enabled Input. Internal pull-up means that this pin can be left unconnected (floating). TCK Internal pull-up enabled Internal pull-up enabled Input. Internal pull-up means that this pin can be left unconnected (floating). TRST_N N/A N/A Input. Must always be driven to a valid logic level. Must be driven to GND for normal operation. FRAME_SYNC N/A N/A Input. Must always be driven to a valid logic level. Must be driven to GND for normal operation. ATEST1 Must be driven to GND for normal operation. ATEST2 Must be driven to GND for normal operation. Notes: MT9V126_DS Rev. J Pub. 5/15 EN 1. The reason for defining the default state as logic 0 rather than high impedance is this: when wired in a system (for example, on our demo boards), these outputs will be connected, and the inputs to which they are connected will want to see a valid logic level. No current drain should result from driving these to a valid logic level (unless there is a pull-up at the system level). 2. These pads have their input circuitry powered down, but they are not output-enabled. Therefore, they can be left floating but they will not drive a valid logic level to an attached device. 17 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor SOC Description SOC Description Detailed Architecture Overview Sensor Core The sensor consists of a pixel array, an analog readout chain, a 10-bit ADC with programmable gain and black offset, and timing and control as illustrated in Figure 4. Figure 4: Sensor Core Block Diagram Active Pixel Sensor (APS) Array Control Register Communication Bus to IFP Timing and Control Clock Sync Signals Analog Processing 10-Bit Data to IFP ADC Pixel Array Structure The sensor core pixel array is configured as 744 columns by 512 rows, as shown in Figure 5. This includes black rows and columns. Figure 5: Pixel Array Description black rows Pixel logical address = (0, 0) black columns Active pixel array 640 x 480 active border columns black columns Pixel logical address = (743, 511) active border columns active border rows active border rows black row (not to scale) The black row data are used internally for the automatic black level adjustment. However, these black rows can also be read out by setting the sensor to raw data output mode. There are 744 columns by 512 rows of optically-active pixels that include a pixel boundary around the VGA (640 x 480) image to avoid boundary effects during color interpolation and correction. MT9V126_DS Rev. J Pub. 5/15 EN 18 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor SOC Description The one additional active column and two additional active rows are used to enable horizontally and vertically mirrored readout to start on the same color pixel. Figure 6 illustrates the process of capturing the image. The original scene is flipped and mirrored by the sensor optics. Sensor readout starts at the lower right corner. The image is presented in true orientation by the output display. Figure 6: Image Capture Example SCENE (Front view) fI so es oc Pr e ag m in er th Ga OPTICS g d an e IMAGE CAPTURE ag Im IMAGE SENSOR (Rear view) isp D Row by Row y la Start Rasterization Start Readout IMAGE RENDERING DISPLAY (Front view) MT9V126_DS Rev. J Pub. 5/15 EN 19 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Sensor Pixel Array Sensor Pixel Array The active pixel array is 640 x 480 pixels. In addition, there are rows and columns for lens alignment and demosaic. Not shown in Figure 7 are pixels for black level calibration. Figure 7: Sensor Pixel Array Lens Alignment Pixels - 12 Rows Demosaic Pixels - 4 Columns Active Pixels 640 Rows, 480 Columns Lens Alignment Pixels - 16 Columns Demosaic Pixels - 4 Columns Lens Alignment Pixels - 16 Columns Demosaic Pixels - 4 Rows Demosaic Pixels - 4 Rows Lens Alignment Pixels - 12 Rows The range of adjustment is from Row 0 to 22 and Column 0 to 30. There are 4 rows/ columns needed to calculate the RGB values. The window should be moved only at even numbers. Figure 8: Pixel Color Pattern Detail (top right corner) Column Readout Direction .. . Row Readout Direction MT9V126_DS Rev. J Pub. 5/15 EN ... Black Pixels G R G R G R G B G B G B G B G R G R G R G B G B G B G B G R G R G R G B G B G B G B 20 First Active Border Pixel (64, 0) (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Sensor Pixel Array Output Data Format The sensor core image data are read out in progressive scan order. Valid image data are surrounded by horizontal and vertical blanking, shown in Figure 9. For NTSC output, the horizontal size is stretched from 640 to 720 pixels. The vertical size is 243 pixels per field; 240 image pixels and 3 dark pixels that are located at the bottom of the image field. For PAL output, the horizontal size is also stretched from 640 to 720 pixels. The vertical size is 288 pixels per field. Figure 9: Spatial Illustration of Image Readout P0,0 P0,1 P0,2.....................................P0,n-1 P0,n P2,0 P2,1 P2,2.....................................P2,n-1 P2,n 00 00 00 .................. 00 00 00 00 00 00 .................. 00 00 00 Valid Image Odd Field Horizontal Blanking Pm-2,0 Pm-2,1.....................................Pm-2,n-1 Pm-2,n 00 00 00 .................. 00 00 00 Pm,0 Pm,1.....................................Pm,n-1 Pm,n 00 00 00 .................. 00 00 00 00 00 00 ..................................... 00 00 00 00 00 00 ..................................... 00 00 00 00 00 00 .................. 00 00 00 00 00 00 .................. 00 00 00 Vertical Even Blanking Vertical/Horizontal Blanking 00 00 00 ..................................... 00 00 00 00 00 00 ..................................... 00 00 00 00 00 00 .................. 00 00 00 00 00 00 .................. 00 00 00 P1,0 P1,1 P1,2.....................................P1,n-1 P1,n P3,0 P3,1 P3,2.....................................P3,n-1 P3,n 00 00 00 .................. 00 00 00 00 00 00 .................. 00 00 00 Valid Image Even Field Horizontal Blanking Pm-1,0 Pm-1,1.....................................Pm-1,n-1 Pm-1,n 00 00 00 .................. 00 00 00 Pm+1,0 Pm+1,1..................................Pm+1,n-1 Pm+1,n 00 00 00 .................. 00 00 00 MT9V126_DS Rev. J Pub. 5/15 EN 00 00 00 ..................................... 00 00 00 00 00 00 ..................................... 00 00 00 00 00 00 .................. 00 00 00 00 00 00 .................. 00 00 00 Vertical Odd Blanking Vertical/Horizontal Blanking 00 00 00 ..................................... 00 00 00 00 00 00 ..................................... 00 00 00 00 00 00 .................. 00 00 00 00 00 00 .................. 00 00 00 21 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Sensor Pixel Array Image Flow Processor Image and color processing in the MT9V126 are implemented as an image flow processor (IFP) coded in hardware logic. During normal operation, the embedded microcontroller will automatically adjust the operation parameters. The IFP is broken down into different sections, as outlined in Figure 10. Figure 10: Color Pipeline RAW 10 Pixel Array ADC Raw Data IFP Test Pattern Generator MUX Black Level Subtraction Digital Gain Control Lens Shading Correction Defect Correction, Noise Reduction, Color Interpolation Statistics Engine 8-bit RGB RGB to YUV 10/12-Bit RGB 8-bit YUV Color Correction Color Kill Aperture Correction Output Formatting YUV to RGB Gamma Correction (12-to-8 Lookup) Output Interface Analog Output Mux NTSC/PAL MT9V126_DS Rev. J Pub. 5/15 EN 22 Parallel Output Mux Parallel Output (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Sensor Pixel Array Test Patterns During normal operation of the MT9V126, a stream of raw image data from the sensor core is continuously fed into the color pipeline. For test purposes, this stream can be replaced with a fixed image generated by a special test module in the pipeline. The module provides a selection of test patterns sufficient for basic testing of the pipeline. Test patterns are accessible by programming a register and are shown in Figure 11. ON Semiconductor recommends disabling the MCU before enabling test patterns. Figure 11: Color Bar Test Pattern Example Test Pattern Flat Field Vertical Ramp Color Bar Vertical Stripes Pseudo-Random MT9V126_DS Rev. J Pub. 5/15 EN 23 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Sensor Pixel Array NTSC/PAL Test Pattern Generation There is a built-in standard EIA (NTSC) and EBU (PAL) color bars to support hue and color saturation characterization. Each pattern consists of seven color bars (white, yellow, cyan, green, magenta, red, and blue). The Y, Cb and Cr values for each bar are detailed in Tables 7 and 8. The test pattern is invoked through a Host Command call to the TX Manager. See the MT9V126 Host Command Specification. Figure 12: Color Bars Table 7: EIA Color Bars (NTSC) Y Cb Cr Table 8: Y Cb Cr Nominal Range White Yellow Cyan Green Magenta Red Blue 16 to 235 16 to 240 16 to 240 180 128 128 162 44 142 131 156 44 112 72 58 84 184 198 65 100 212 35 212 114 EBU Color Bars (PAL) Nominal Range White Yellow Cyan Green Magenta Red Blue 16 to 235 16 to 240 16 to 240 235 128 128 162 44 142 131 156 44 112 72 58 84 184 198 65 100 212 35 212 114 CCIR-656 Format The color bar data is encoded in 656 data streams. The duration of the blanking and active video periods of the generated 656 data are summarized in the following tables. Table 9: NTSC Line Numbers Field Description 1-3 2 Blanking 4-19 1 Blanking 20-263 1 Active video 264-265 1 Blanking 266-282 2 Blanking 283-525 2 Active Video MT9V126_DS Rev. J Pub. 5/15 EN 24 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Sensor Pixel Array Table 10: PAL Line Numbers Field 1-22 1 Description Blanking 23-310 1 Active video 311-312 1 Blanking 313-335 2 Blanking 336-623 2 Active video 624-625 2 Blanking Black Level Subtraction and Digital Gain Image stream processing starts with black level subtraction and multiplication of all pixel values by a programmable digital gain. Both operations can be independently set to separate values for each color channel (R, Gr, Gb, B). Independent color channel digital gain can be adjusted with registers. Independent color channel black level adjustments can also be made. If the black level subtraction produces a negative result for a particular pixel, the value of this pixel is set to 0. Positional Gain Adjustments (PGA) Lenses tend to produce images whose brightness is significantly attenuated near the edges. There are also other factors causing fixed pattern signal gradients in images captured by image sensors. The cumulative result of all these factors is known as image shading. The MT9V126 has an embedded shading correction module that can be programmed to counter the shading effects on each individual R, Gb, Gr, and B color signal. The Correction Function The correction functions can then be applied to each pixel value to equalize the response across the image as follows: P corrected (row,col)=P sensor (row,col)*f(row,col) (EQ 1) where P are the pixel values and f is the color dependent correction functions for each color channel. Color Interpolation In the raw data stream fed by the sensor core to the IFP, each pixel is represented by a 10-bit integer number, which can be considered proportional to the pixel's response to a one-color light stimulus, red, green, or blue, depending on the pixel's position under the color filter array. Initial data processing steps, up to and including the defect correction, preserve the one-color-per-pixel nature of the data stream, but after the defect correction it must be converted to a three-colors-per-pixel stream appropriate for standard color processing. The conversion is done by an edge-sensitive color interpolation module. The module pads the incomplete color information available for each pixel with information extracted from an appropriate set of neighboring pixels. The algorithm used to select this set and extract the information seeks the best compromise between preserving edges and filtering out high frequency noise in flat field areas. The edge threshold can be set through register settings. MT9V126_DS Rev. J Pub. 5/15 EN 25 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Sensor Pixel Array Color Correction and Aperture Correction To achieve good color fidelity of the IFP output, interpolated RGB values of all pixels are subjected to color correction. The IFP multiplies each vector of three pixel colors by a 3 x 3 color correction matrix. The three components of the resulting color vector are all sums of three 10-bit numbers. Since such sums can have up to 12 significant bits, the bit width of the image data stream is widened to 12 bits per color (36 bits per pixel). The color correction matrix can be either programmed by the user or automatically selected by the auto white balance (AWB) algorithm implemented in the IFP. Color correction should ideally produce output colors that are corrected for the spectral sensitivity and color crosstalk characteristics of the image sensor. The optimal values of the color correction matrix elements depend on those sensor characteristics and on the spectrum of light incident on the sensor. The color correction variables can be adjusted through register settings. To increase image sharpness, a programmable 2D aperture correction (sharpening filter) is applied to color-corrected image data. The gain and threshold for 2D correction can be defined through register settings. MT9V126_DS Rev. J Pub. 5/15 EN 26 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Sensor Pixel Array Gamma Correction The MT9V126 IFP includes a block for gamma correction that can adjust its shape based on brightness to enhance the performance under certain lighting conditions. Two custom gamma correction tables may be uploaded corresponding to a brighter lighting condition and a darker lighting condition. At power-up, the IFP loads the two tables with default values. The final gamma correction table used depends on the brightness of the scene and takes the form of an interpolated version of the two tables. The gamma correction curve (as shown in Figure 13) is implemented as a piecewise linear function with 19 knee points, taking 12-bit arguments and mapping them to 8-bit output. The abscissas of the knee points are fixed at 0, 64, 128, 256, 512, 768, 1024, 1280, 1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 3584, 3840, and 4096. The 8-bit ordinates are programmable through IFP registers. Figure 13: Gamma Correction Curve RGB to YUV Conversion For further processing, the data is converted from RGB color space to YUV color space. Color Kill To remove high-or low-light color artifacts, a color kill circuit is included. It affects only pixels whose luminance exceeds a certain preprogrammed threshold. The U and V values of those pixels are attenuated proportionally to the difference between their luminance and the threshold. YUV Color Filter As an optional processing step, noise suppression by one-dimensional low-pass filtering of Y and/or UV signals is possible. A 3- or 5-tap filter can be selected for each signal. MT9V126_DS Rev. J Pub. 5/15 EN 27 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Sensor Pixel Array YUV-to-RGB/YUV Conversion and Output Formatting The YUV data stream emerging from the scaling module can either exit the color pipeline as-is or be converted before exit to an alternative YUV or RGB data format. Output Format and Timing YUV/RGB Data Ordering The MT9V126 supports swapping YCbCr mode, as illustrated in Table 11. Table 11: YCbCr Output Data Ordering Mode Data Sequence Default (no swap) Swapped CbCr Swapped YC Swapped CbCr, YC Yi Yi Cbi Cri Cbi Cri Yi Yi Cri Cbi Yi+1 Yi+1 Yi+1 Yi+1 Cri Cbi The RGB output data ordering in default mode is shown in Table 12. The odd and even bytes are swapped when luma/chroma swap is enabled. R and B channels are bit-wise swapped when chroma swap is enabled. Table 12: RGB Ordering in Default Mode Mode (Swap Disabled) Byte D7D6D5D4D3D2D1D0 565RGB Odd Even Odd Even Odd Even Odd Even R7R6R5R4R3G7G6G5 G4G3G2B7B6B5B4B3 0 R7R6R5R4R3G7G6 G5G4G3B7B6B5B4B3 R7R6R5R4G7G6G5G4 B7B6B5B4 0 0 0 0 0 0 0 0 R7R6R5R4 G7G6G5G4B7B6B5B4 555RGB 444xRGB x444RGB Uncompressed 10-Bit Bypass Output Raw 10-bit Bayer data from the sensor core can be output in bypass mode in two ways: * Using 8 data output signals (DOUT[7:0]) and GPIO[1:0]. The GPIO signals are the least significant 2 bits of data. * Using only 8 signals (DOUT[7:0]) and a special 8 + 2 data format, shown in Table 13. Table 13: 2-Byte Bayer Format Byte Bits Used Bit Sequence Odd bytes 8 data bits D9D8D7D6D5D4D3D2 Even bytes 2 data bits + 6 unused bits 0 0 0 0 0 0 D1D0 Readout Formats Progressive format is used for raw Bayer output. MT9V126_DS Rev. J Pub. 5/15 EN 28 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Sensor Pixel Array Output Formats ITU-R BT.656 and RGB Output The MT9V126 can output processed video as a standard ITU-R BT.656 (CCIR656) stream, an RGB stream, or as unprocessed Bayer data. The ITU-R BT.656 stream contains YCbCr 4:2:2 data with fixed embedded synchronization codes. This output is typically suitable for subsequent display by standard video equipment or JPEG/MPEG compression. Colorpipe data (pre-lens correction and overlay) can also be output in YCbCr 4:2:2 and a variety of RGB formats in 640 by 480 progressive format in conjunction with LINE_VALID and FRAME_VALID. The MT9V126 can be configured to output 16-bit RGB (565RGB), 15-bit RGB (555RGB), and two types of 12-bit RGB (444RGB). Refer to Table 31 and Table 32 on page 66 for details. Bayer Output Unprocessed Bayer data are generated when bypassing the IFP completely--that is, by simply outputting the sensor Bayer stream as usual, using FRAME_VALID, LINE_VALID, and PIXCLK to time the data. This mode is called sensor stand-alone mode. Output Ports Composite Video Output The composite video output DAC is external-resistor-programmable and supports both single-ended and differential output. The DAC is driven by the on-chip video encoder output. Parallel Output Parallel output uses either 8-bit or 10-bit output. Eight-bit output is used for ITU-R BT.656 and RGB output. Ten-bit output is used for raw Bayer output. MT9V126_DS Rev. J Pub. 5/15 EN 29 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Usage Modes Usage Modes How a camera based on the MT9V126 will be configured depends on what features are used. In the simplest case, only an MT9V126 plus an external flash memory, or an 8-bit microcontroller (C) might be sufficient.A back-up camera with dynamic input from the steering system will require a C with a system bus interface such as a CAN bus or a LIN bus. Flash sizes vary depending on the data for registers, firmware, and overlay data-- somewhere between 10Kb to 16MB. The two-wire bus is adequate since only high-level commands are used to invoke overlays, load registers from memory, or set up lens correction parameters. Overlay data can alternatively be issued by the external C if the rate of refreshing data is deemed adequate. If there are no commands in the Flash image the device can be in auto configuration mode by which the sensor is set up according to the status of pins FRAME_VALID, LINE_VALID and DOUT_LSB0. For further information, see "Auto-Configuration" on page 35. In the simplest case no Flash memory or C is required, as shown in Figure 14. This is truly a single chip operation. Note: Figure 14: Because mandatory patches must be loaded, the Auto-Config mode is not recommended. Auto-Config Mode MT9V126 Auto-Config Mode Analog Out Digital Out The MT9V126 can be configured by a serial Flash through the SPI Interface. Figure 15: Flash Mode MT9V126 Serial Flash SPI MT9V126_DS Rev. J Pub. 5/15 EN 30 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Usage Modes Overlay functions can also be assigned to general purpose inputs. For instance, a proximity sensor would call up a warning message. That capability can be employed on all configurations with external Flash memory by mapping overlay images to an input. Alternatively, the C may poll these inputs to create an action such as a new overlay as shown in Figure 16. Figure 16: Usage Mode 3 MT9V126 Serial Flash SPI GPI[7:0] Proximity Sensor Typically, an automotive bus such as CAN or LIN bus will be connected to a rear-view camera for the purpose of dynamically providing steering information that will in turn be translated into overlay images being called by the C as shown in Figure 17. Figure 17: Host Mode with Flash 8/16bit uC MT9V126 CAN/ LIN Bus two-wire Serial Flash SPI Overlay information may also be passed by the C without a need for a Flash memory. However, because the data transfer rate is limited over the two-wire serial bus, the update rate may be slower. However, if overlay images are preloaded into the four onchip buffers, they may be turned on and off or move location at the frame rate as shown in Figure 18. Figure 18: Host Mode 8/16bit C MT9V126 CAN / LIN Bus two-wire MT9V126_DS Rev. J Pub. 5/15 EN 31 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor External Overlay External Overlay In addition to the on-chip overlay generator, an externally generated overlay may be superimposed onto the video output. Figure 19: External Overlay System Block Diagram 27 MHz EXTCLK SPI Serial data Flash 10Kb to 16MB LP filter VIDEO_P CVBS PAL/NTSC VIDEO_N Overlay FPGA/DSP MT9V126_DS Rev. J Pub. 5/15 EN DIN [7:0] DOUT [7:0] DINCLK PIXCLK 32 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Multicamera Support Multicamera Support Two or more MT9V126 sensors may be synchronized to a frame by asserting the FRAME_SYNC signal. At that point, the sensor and video encoder will reset without affecting any register settings. The MT9V126 may be triggered to be synchronized with another MT9V126 or an external event. Figure 20: Multicamera System Block Diagram Decoder /DSP Dual Camera MT9V126 CVBS OSC Camera 1 F_SYNC CVBS MT9V126 Camera 2 F _SYNC 1 CAN MT9V126_DS Rev. J Pub. 5/15 EN C 33 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor External Signal Processing External Signal Processing An external signal processor can take data from ITU656 or raw Bayer output format and post-process or compress the data in various formats. Figure 21: External Signal Processing Block Diagram 27 MHz EXTCLK SPI Serial data Flash 10Kb to 16MB VIDEO_P VIDEO_N CVBS PAL/NTSC DOUT [7:0] PIXCLK Signal processor Device Configuration After power is applied and the device is out of reset by de-asserting the RESET_BAR pin, it will enter a boot sequence to configure its operating mode. There are essentially four modes, two when Flash is present and two when Flash is not present. Figure 22: "PowerUp Sequence - Configuration Options Flow Chart," on page 36 contains more details on the configuration options. If Flash is present and: * A valid Flash device identifier is detected AND the Flash device contains valid configuration records, then - Disable Auto-Config - Parse Flash Content - Load Flash Configuration ->Flash Configuration Mode * A valid Flash device identifier is detected BUT the Flash device DOES NOT contain valid configuration records, then - Enter Auto Configuration. If Flash is not present and: * SPI_SDI == 0, then - Enter Host Configuration. * SPI_SDI != 0, then - Enter Auto Configuration MT9V126_DS Rev. J Pub. 5/15 EN 34 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor External Signal Processing Auto-Configuration The device supports an auto-configuration feature. During system start-up, the device first detects whether an SPI Flash device is attached to the MT9V126. If not, it will then sample the state of a number of GPI inputs including FRAME_VALID, LINE_VALID and DOUT_LSB0. For more information, see Table 16, "GPIO Bit Descriptions," on page 37. The state of these inputs then determines the configuration of a number of subsystems of the device such as readout mode, pedestal and video format, respectively. The auto-configuration feature can be disabled by grounding the SPI_DIN pin. The device samples the state of this pin during the Flash device detection process. If no SPI Flash device is detected (read device ID of 0x00 or 0xFF), OR the SPI_DIN pin is grounded, then auto-configuration is disabled. Flash Configuration Mode If a valid Flash is detected (by reading device ID other than 0x00 or 0xFF) and the flash device contains valid configuration records, then these configuration records are processed. Host Configuration This mode is entered if the SPI_DIN pin is grounded. The SOC performs no configuration, and remains idle waiting for configuration and instruction from the host. MT9V126_DS Rev. J Pub. 5/15 EN 35 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor External Signal Processing Power Sequence In power-up, the core voltage (1.8V) must trail the IO (2.8V) by a positive number. All 2.8V rails can be turned on at the same time or follow the power-up sequence in Figure 52: "Power Up Sequence," on page 72. In power down, the sequence is reversed. The core voltage (1.8V) must be turned off before any 2.8V. Refer to Figure 53: "Power Down Sequence," on page 73 for details. Figure 22: Power-Up Sequence - Configuration Options Flow Chart Power Up/ RESET Host Configuration : yes Flash Header? no yes Disable Auto -Config SPI _SDI = 0? Parse Flash Content Flash Configuration: no Disable Auto-Config Auto Configuration: FRAME_VALID, LINE_VALID, D OUT_LSB0 Wait for Host Command Host Configuration: Wait for Host Command Wait for Host Command FRAME_VALID 0: Normal 1: Horizontal Mirror LINE_VALID 0 No Pedestal 1: Pedestal DOUT_LSB0 0: NTSC 1: PAL Supported SPI Devices Table 14 lists supported Flash devices. Devices not compatible will require a firmware patch. Contact ON Semiconductor for additional support. Table 14: SPI Flash Devices Type Density Manufacturer Device Speed (MHz) Flash 8 MB Atmel AT26DF081A 70 Flash 1 MB ST M25P10-AVMB3 50 MT9V126_DS Rev. J Pub. 5/15 EN 36 Standard JEDEC/Device ID Temp Range (F) Supported -20 to +85 Yes -40 to +125 Yes (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor External Signal Processing Supported SPI Commands The SPI commands shown in Table 15 are supported by the MT9V126. Table 15: Table 16: SPI Commands Supported Command Value Read Array Block Erase Chip Erase Read Status Write status Byte Page Program Write Enable Write Disable Read Manufacturer and Device ID (Fast) Read Array 0x03 0xD8 0xC7 0x05 0x01 0x02 0x06 0x04 0x9F 0x0B GPIO Bit Descriptions MT9V126_DS Rev. J Pub. 5/15 EN GPI[2] (DOUT_LSB0) GPI[1] (FRAME_VALID) GPI[0] (LINE_VALID) Low ("0") NTSC Normal No pedestal High ("1") PAL Horizontal mirror Pedestal 37 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor External Signal Processing Host Command Interface ON Semiconductor's sensors and SOCs contain numerous registers that are accessed through a two-wire interface with speeds up to 400 kHz. The MT9V126, in addition to writing or reading straight to/from registers or firmware variables, has a mechanism to write higher level commands, the Host Command Interface (HCI). Once a command has been written through the HCI, it will be executed by on chip firmware and the results are reported back. In general, registers shall not be accessed with the exception of registers that are marked for "User Access." Flash memory is also available to store commands for later execution. Under DMA control, a command is written into the SOC and executed. For a complete spec on host commands, refer to the MT9V126 Host Command Interface Specification. Figure 23: Interface Structure bit Addr 0x40 15 1 0 14 0 Host Command to FW Response from FW command register door bell bit Addr 0xFC00 15 0 Parameter 0 cmd_handler_params_pool_0 Addr 0xFC02 cmd_handler_params_pool_1 cmd_handler_params_pool_2 Addr 0xFC04 cmd_handler_params_pool_3 Addr 0xFC06 cmd_handler_params_pool_4 Addr 0xFC08 cmd_handler_params_pool_5 Addr 0xFC0A Addr 0xFC0C cmd_handler_params_pool_6 Addr 0xFC0E Parameter 7 cmd_handler_params_pool_7 MT9V126_DS Rev. J Pub. 5/15 EN 38 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor External Signal Processing Host Command Process Flow Issu e Comma n d Wa it for a resp on se? Host cou ld in sert a n op tion a l d ela y here Yes Rea d Comma n d reg ister Host cou ld in sert a n op tion a l d ela y here No Rea d Comma n d reg ister No Doorbell bit clea r ? Doorbell bit clea r? Yes At this p oin t Comma n d Reg ister con ta in s resp on se cod e Comma n d ha s p a ra meters ? Write p a ra meters to Pa ra meter Pool No Yes Comma n d ha s response parameters ? Yes No No No Yes Rea d resp on se p a ra meters from Pa ra meter Pool Write comma n d to Comma n d reg ister Don e Command Flow The host issues a command by writing (through a two-wire interface bus) to the command register. All commands are encoded with bit 15 set, which automatically generates the host command (doorbell) interrupt to the microprocessor. Assuming initial conditions, the host first writes the command parameters (if any) to the parameters pool (in the command handler's logical page), then writes the command to command register. The interrupt handler then signals the command handler task to process the command. If the host wishes to determine the outcome of the command, it must poll the command register waiting for the doorbell bit to be cleared. This indicates that the firmware completed processing the command. The contents of the command register indicate the command's result status. If the command generated response parameters, the host can now retrieve these from the parameters pool. MT9V126_DS Rev. J Pub. 5/15 EN 39 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor External Signal Processing Note: The host must not write to the parameters pool, nor issue another command, until the previous command completes. This is true even if the host does not care about the result of the previous command. Therefore, the host must always poll the command register to determine the state of the doorbell bit, and ensure the bit is cleared before issuing a command. For a complete command list and further information consult the Host Command Interface Specification. An example of how (using DevWare) a command may be initiated in the form of a "Preset" follows. Set Parallel Mode - Normal (Overlay i656) All DevWare presets supplied by ON Semiconductor poll and test the doorbell bit after issuing the command. Therefore there is no need to check if the doorbell bit is clear before issuing the next command. REG= 0xFC00, 0x1000 // CMD_HANDLER_PARAMS_POOL_0 REG= 0x0040, 0x8801 // issue command // POLL COMMAND_REGISTER::DOORBELL => 0x0 Summary of Host Commands Table 17 on page 40 through Table 23 on page 43 show summaries of the host commands. The commands are divided into the following sections: - System Manager - Overlay - Dewarp (or Lens Distortion Correction) - GPIO Host interface - Flash Manager Host - Patch Loader Interface - TX Manager Following is a summary of the Host Interface commands. The description gives a quick orientation. The "Type" column shows if it is an asynchronous or synchronous command. For a complete list of all commands including parameters, consult the Host Command Interface Specification document. Table 17: System Manager Commands System Manager Host Command Value Type Set State 0x8100 Asynchronous Request the system enter a new state Get State 0x8101 Synchronous Get the current state of the system Table 18: Overlay Host Commands Overlay Host Command Description Value Type Enable Overlay 0x8200 Synchronous Enable or disable the overlay subsystem Get Overlay State 0x8201 Synchronous Retrieve the state of the overlay subsystem Set Calibration 0x8202 Synchronous Set the calibration offset Set Bitmap Property 0x8203 Synchronous Set a property of a bitmap Get Bitmap Property 0x8204 Synchronous Get a property of a bitmap MT9V126_DS Rev. J Pub. 5/15 EN Description 40 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor External Signal Processing Table 18: Overlay Host Commands Overlay Host Command Value Type Set String Property 0x8205 Synchronous Set a property of a character string Load Buffer 0x8206 Asynchronous Load an overlay buffer with a bitmap (from Flash) Load Status 0x8207 Synchronous Retrieve status of an active load buffer operation Write Buffer 0x8208 Synchronous Write directly to an overlay buffer Read Buffer 0x8209 Synchronous Read directly from an overlay buffer Enable Layer 0x820A Synchronous Enable or disable an overlay layer Get Layer Status 0x820B Synchronous Retrieve the status of an overlay layer Set String 0x820C Synchronous Set the character string Load String 0x820E Asynchronous Load a character string (from Flash) Table 19: Description Dewarp Commands Dewarp Host Command Enable Dewarp Get Dewarp State Value Type Description 0x8300 Asynchronous Enable or disable the dewarp subsystem 0x8301 Synchronous Retrieve the current state of the dewarp subsystem 0x8302 Asynchronous Load a pair of dewarp configuration sets from SPI Flash into local cache (and apply) 0x8303 Synchronous Retrieve the status of a Load Config request 0x8304 Synchronous Write a dewarp configuration set under Host control into local cache Apply Config 0x8305 Asynchronous Apply a dewarp configuration set stored in local cache Read Config 0x8306 Synchronous Read a dewarp configuration set under Host control. Load Config Config Status Write Config Table 20: GPIO Host Commands GPIO Host Command Value Type Set GPIO Property 0x8400 Synchronous Set a property of one or more GPIO pins Get GPIO Property 0x8401 Synchronous Retrieve a property of a GPIO pin Set GPO State 0x8402 Synchronous Set the state of a GPO pin or pins Get GPIO State 0x8403 Synchronous Get the state of a GPI pin or pins Set GPI Association 0x8404 Synchronous Associate a GPI pin state with a Command Sequence stored in SPI Flash Table 21: Description Flash Manager Host Commands Flash Manager Host Command Value Type Description Get Lock 0x8500 Asynchronous Request the Flash Manager access lock Lock Status 0x8501 Synchronous Retrieve the status of the access lock request Release Lock 0x8502 Synchronous Release the Flash Manager access lock Config 0x8503 Synchronous Configure the Flash Manager and underlying SPI Flash subsystem Read 0x8504 Asynchronous Read data from the SPI Flash Write 0x8505 Asynchronous Write data to the SPI Flash Erase Block 0x8506 Asynchronous Erase a block of data from the SPI Flash Erase Device 0x8507 Asynchronous Erase the SPI Flash device MT9V126_DS Rev. J Pub. 5/15 EN 41 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor External Signal Processing Table 21: Flash Manager Host Commands Flash Manager Host Command Value Type Description Query Device 0x8508 Asynchronous Query device-specific information Status 0x8509 Synchronous Table 22: Obtain status of current asynchronous operation Sequencer Host Commands Sequencer Host Command Value Type Description Set Encoding Mode 0x8603 Synchronous Set the encoding mode Enable Horizontal Flip 0x8604 Synchronous Enable or disable horizontal flip Set Flicker Frequency 0x8605 Synchronous Set the flicker frequency Refresh Mode 0x8606 Synchronous Refresh the Sequencer mode/context MT9V126_DS Rev. J Pub. 5/15 EN 42 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor External Signal Processing Table 23: TX Manager Host Commands TX Manager Host Command Value Type Config DAC 0x8800 Synchronous Configure the Video DAC Set Parallel Mode 0x8801 Synchronous Configure the Parallel output port MT9V126_DS Rev. J Pub. 5/15 EN Description 43 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Slave Two-Wire Serial Interface Slave Two-Wire Serial Interface The two-wire serial interface bus enables read/write access to control and status registers within the MT9V126. This interface is designed to be compatible with the MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2) 1.0, which uses the electrical characteristics and transfer protocols of the two-wire serial interface specification. The interface protocol uses a master/slave model in which a master controls one or more slave devices. The sensor acts as a slave device. The master generates a clock (SCLK) that is an input to the sensor and used to synchronize transfers. Data is transferred between the master and the slave on a bidirectional signal (SDATA). SDATA is pulled up to VDD_IO off-chip by a pull-up resistor in the range of 1.5 to 4.7k resistor. Protocol Data transfers on the two-wire serial interface bus are performed by a sequence of lowlevel protocol elements, as follows: * a start or restart condition * a slave address/data direction byte * a 16-bit register address * an acknowledge or a no-acknowledge bit * data bytes * a stop condition The bus is idle when both SCLK and SDATA are HIGH. Control of the bus is initiated with a start condition, and the bus is released with a stop condition. Only the master can generate the start and stop conditions. The SADDR pin is used to select between two different addresses in case of conflict with another device. If SADDR is LOW, the slave address is 0x90; if SADDR is HIGH, the slave address is 0xBA. See Table 24 below. Table 24: Two-Wire Interface ID Address Switching SADDR Two-Wire Interface Address ID 0 1 0x90 0xBA Start Condition A start condition is defined as a HIGH-to-LOW transition on SDATA while SCLK is HIGH. At the end of a transfer, the master can generate a start condition without previously generating a stop condition; this is known as a "repeated start" or "restart" condition. Data Transfer Data is transferred serially, 8 bits at a time, with the MSB transmitted first. Each byte of data is followed by an acknowledge bit or a no-acknowledge bit. This data transfer mechanism is used for the slave address/data direction byte and for message bytes. One data bit is transferred during each SCLK clock period. SDATA can change when SCLK is low and must be stable while SCLK is HIGH. MT9V126_DS Rev. J Pub. 5/15 EN 44 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Slave Two-Wire Serial Interface Slave Address/Data Direction Byte Bits [7:1] of this byte represent the device slave address and bit [0] indicates the data transfer direction. A "0" in bit [0] indicates a write, and a "1" indicates a read. The default slave addresses used by the MT9V126 are 0x90 (write address) and 0x91 (read address). Alternate slave addresses of 0xBA (write address) and 0xBB (read address) can be selected by asserting the SADDR input signal. Message Byte Message bytes are used for sending register addresses and register write data to the slave device and for retrieving register read data. The protocol used is outside the scope of the two-wire serial interface specification. Acknowledge Bit Each 8-bit data transfer is followed by an acknowledge bit or a no-acknowledge bit in the SCLK clock period following the data transfer. The transmitter (which is the master when writing, or the slave when reading) releases SDATA. The receiver indicates an acknowledge bit by driving SDATA LOW. As for data transfers, SDATA can change when SCLK is LOW and must be stable while SCLK is HIGH. No-Acknowledge Bit The no-acknowledge bit is generated when the receiver does not drive SDATA low during the SCLK clock period following a data transfer. A no-acknowledge bit is used to terminate a read sequence. Stop Condition A stop condition is defined as a LOW-to-HIGH transition on SDATA while SCLK is HIGH. MT9V126_DS Rev. J Pub. 5/15 EN 45 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Slave Two-Wire Serial Interface Typical Operation A typical READ or WRITE sequence begins by the master generating a start condition on the bus. After the start condition, the master sends the 8-bit slave address/data direction byte. The last bit indicates whether the request is for a READ or a WRITE, where a "0" indicates a WRITE and a "1" indicates a READ. If the address matches the address of the slave device, the slave device acknowledges receipt of the address by generating an acknowledge bit on the bus. If the request was a WRITE, the master then transfers the 16-bit register address to which a WRITE will take place. This transfer takes place as two 8-bit sequences and the slave sends an acknowledge bit after each sequence to indicate that the byte has been received. The master will then transfer the 16-bit data, as two 8-bit sequences and the slave sends an acknowledge bit after each sequence to indicate that the byte has been received. The master stops writing by generating a (re)start or stop condition. If the request was a READ, the master sends the 8-bit write slave address/data direction byte and 16-bit register address, just as in the write request. The master then generates a (re)start condition and the 8-bit read slave address/data direction byte, and clocks out the register data, 8 bits at a time. The master generates an acknowledge bit after each 8bit transfer. The data transfer is stopped when the master sends a no-acknowledge bit. Single READ from Random Location Figure 24 shows the typical READ cycle of the host to MT9V126. The first two bytes sent by the host are an internal 16-bit register address. The following 2-byte READ cycle sends the contents of the registers to host. Figure 24: Single READ from Random Location Previous Reg Address, N S Slave Address 0 A Reg Address[15:8] S = start condition P = stop condition Sr = restart condition A = acknowledge A = no-acknowledge A M+1 Reg Address, M Reg Address[7:0] A Sr Slave Address 1 A Read Data Read Data A A [15:8] [7:0] P slave to master master toslave Single READ from Current Location Figure 25 shows the single READ cycle without writing the address. The internal address will use the previous address value written to the register. Figure 25: Single Read from Current Location Previous Reg Address, N S Slave Address MT9V126_DS Rev. J Pub. 5/15 EN 1 A Reg Address, N+1 Read Data Read Data A A [7:0] [15:8] P S 46 Slave Address N+2 1 A Read Data Read Data A P A [15:8] [7:0] (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Slave Two-Wire Serial Interface Sequential READ, Start from Random Location This sequence (Figure 26) starts in the same way as the single READ from random location (Figure 24 on page 46). Instead of generating a no-acknowledge bit after the first byte of data has been transferred, the master generates an acknowledge bit and continues to perform byte READs until "L" bytes have been read. Figure 26: Sequential READ, Start from Random Location Previous Reg Address, N S Slave Address 0 A Reg Address[15:8] M+1 Read Data (15:8) A A M+2 Read Data (7:0) A Read Data (15:8) A Reg Address, M Reg Address[7:0] Read Data (15:8) A A 1 A Slave Address M+L-2 M+3 Read Data (7:0) A Sr M+1 Read Data M+L-1 Read Data (7:0) A Read Data (15:8) A A M+L Read Data (7:0) A P Sequential READ, Start from Current Location This sequence (Figure 27) starts in the same way as the single READ from current location (Figure 25). Instead of generating a no-acknowledge bit after the first byte of data has been transferred, the master generates an acknowledge bit and continues to perform byte reads until "L" bytes have been read. Figure 27: Sequential READ, Start from Current Location Previous Reg Address, N S Slave Address 1 A N+1 Read Data Read Data (15:8)ReadAData (7:0) A N+2 Read Data Read Data (15:8)ReadAData (7:0) A Read Data Read Data ReadAData (15:8) (7:0) N+L-1 Read Data Read Data Data A Read (15:8) (7:0) A N+L A P Single Write to Random Location Figure 28 shows the typical WRITE cycle from the host to the MT9V126. The first 2 bytes indicate a 16-bit address of the internal registers with most-significant byte first. The following 2 bytes indicate the 16-bit data. Figure 28: Single WRITE to Random Location Previous Reg Address, N S MT9V126_DS Rev. J Pub. 5/15 EN Slave Address 0 A Reg Address[15:8] 47 A Reg Address[7:0] Reg Address, M A Write Data M+1 A P A (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Slave Two-Wire Serial Interface Sequential WRITE, Start at Random Location This sequence (Figure 29) starts in the same way as the single WRITE to random location (Figure 28). Instead of generating a no-acknowledge bit after the first byte of data has been transferred, the master generates an acknowledge bit and continues to perform byte writes until "L" bytes have been written. The WRITE is terminated by the master generating a stop condition. Figure 29: Sequential WRITE, Start at Random Location Previous Reg Address, N S Slave Address 0 A Reg Address[15:8] M+1 Write Data (15:8) MT9V126_DS Rev. J Pub. 5/15 EN A M+2 Write Data (7:0) A Write Data Write Data WriteAData (15:8) (7:0) A Reg Address, M Reg Address[7:0] A Write Data M+L-2 M+3 Write Data Write Data WriteAData (15:8) (7:0) A A 48 M+1 A M+L-1 A Write Data Write Data WriteAData (15:8) (7:0) M+L A P A (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Integrated Lens Distortion Correction Integrated Lens Distortion Correction Integrated lens distortion correction eliminates the need for an expensive DSP for image correction. Using software tools, a flexible algorithm can be calibrated for many wide-angle lenses. Table 25: Lens Correction Features Description Value HFOV References/Comments 60 to180 Aperture range HFOV (horizontal field of view) f#2.0 to f#4.0 Aperture range Maximum lens distortion 25% Maximum lens distortion as percentage of FOV Maximum distortion after correction 1% Maximum distortion after correction Input resolution Output resolution Horizontal 640 x 480 Progressive scan 720 x 240 NTSC mode 720 x 288 PAL mode 10% Vertical +10% to -25% Lens Distortion Definition Automotive backup cameras typically feature a wide FOV lens so that a single cameramounted above the center of the rear bumper can present the driver with a view of all potential obstacles immediately behind the full width of the vehicle. Lenses with a wide field of view typically exhibit at least a noticeable amount of barrel distortion. Barrel distortion is caused by a reduction in object magnification the further away from the optical axis. A barrel distortion percentage can be measured as the amount a reference line is bent as a percentage of the image height. For example, the lens used to capture the image below demonstrates a barrel distortion of approximately 21 percent. The distortion of this lens is near the maximum amount of distortion that must be corrected by the MT9V126. Figure 30: Barrel Distortion Definition Image Height = 480 rows Distortion = 100 rows Barrel Distortion of 21% (100/480) For the image to appear natural to the driver, the MT9V126 corrects this barrel distortion and reprocesses the image so that the resulting distortion is less than one percent. MT9V126_DS Rev. J Pub. 5/15 EN 49 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Integrated Lens Distortion Correction Lens Distortion Correction Distortion correction is the ability to digitally correct the lens barrel distortion and to provide a natural view of objects. In addition, with barrel distortion one can adjust the perspective view to enhance the visibility by virtually elevating the point of viewing objects. 22 11 33 Notes: MT9V126_DS Rev. J Pub. 5/15 EN 44 1. This image shows the original image with the targeted field of view (FOV), which is programmable, after correction. 2. The image is corrected. 3. The image is cropped to its largest usable rectangle. 4. The image is finally cropped and scaled up to NTSC output format. 50 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Integrated Lens Distortion Correction Perspective View A backup camera has to be able to virtually adjust the vertical perspective as if the camera were placed immediately behind the vehicle pointed directly down, as illustrated in Figure 31. The vertical perspective adjustment may be employed temporarily to assist with parking conditions, or it may be enabled permanently by loading new parameters. Figure 31: Vertical Perspective Adjustment Perspective Adjustment Angle In the transition between different settings, one or two black frames may be inserted temporarily, resulting in a slight flicker. Conversion Sequence Starting with the captured distorted image, the conversion process sequence is shown in Figure 32 on page 52. The configuration data created by the lens distortion emulator are then transferred into the memory compile tool with DevWare. MT9V126_DS Rev. J Pub. 5/15 EN 51 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Integrated Lens Distortion Correction Figure 32: Conversion Sequence 1 2 3 Notes: MT9V126_DS Rev. J Pub. 5/15 EN 1. A distorted NTSC output image may be taken by the MT9V126. 2. Distortion-corrected image created with ON Semiconductor's lens distortion emulator program. 3. Perspective view adjustment also using ON Semiconductor's lens distortion emulator program. 52 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Overlay Capability Overlay Capability Figure 33 highlights the graphical overlay data flow of the MT9V126. The images are separated to fit into 2KB blocks of memory after compression. * Up to four overlays may be blended simultaneously * Overlay size 360 x 480 pixels rendered into a display area of 720 x 480 pixels * Selectable readout: rotating order is user programmable * Dynamic movement through predefined overlay images * Palette of 32 colors out of 64,000 with eight colors per bitmap * Blend factors may be changed dynamically to achieve smooth transitions The host commands allow a bitmap to be written piecemeal to a memory buffer through the I2C, and through the DMA direct from SPI Flash memory. Multiple encoding passes may be required to fit an image into a 2KB block of memory; alternatively, the image can be divided into two or more blocks to make the image fit. Every graphic image may be positioned in an x/y direction and overlap with other graphic images. The host may load an image at any time. Under control of DMA assist, data are transferred to the off-screen buffer in compressed form. This assures that no display data are corrupted during the replenishment of the four active overlay buffers. Figure 33: Overlay Data Flow Overlay buffers: 2KB each Flash Decompress Blend and Overlay Bitmaps - compressed Note: MT9V126_DS Rev. J Pub. 5/15 EN Off-screen buffer These images are not actually rendered, but show conceptual objects and object blending. 53 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Serial Memory Partition Serial Memory Partition The contents of the Flash/EEPROM memory partition logically into three blocks (see Figure 34): * Memory for overlay data and descriptors * Memory for register settings, which may be loaded at boot-up * Firmware extensions or software patches; in addition to the on-chip firmware, extensions reside in this block of memory These blocks are not necessarily contiguous. Figure 34: Memory Partitioning Flash Partitioning Flash Partitioning Fixed-size Fixed Size Overlays - RLE Overlays-RLE Fixed Size Fixed-size Overlays - RLE Overlays-RLE 12-byte 12Byte Header Header Overlay DataData Overlay RLEEncoded Encoded RLE Data Data 2KB 2kByte Lens Shading Lens Correction Correction Parameter Parameter Alternate Alternate Reg. Register Setting Setting S/W Patch Software Patch For a complete description of memory organization, refer to the MT9V126 SPI Flash Contents Encoding Specification. External Memory Speed Requirement For a 2KB block of overlay to be transferred within a frame time to achieve maximum update rate, the serial memory has to be a certain speed. Table 26: Transfer Time Estimate MT9V126_DS Rev. J Pub. 5/15 EN Frame Time SPI Clock Transfer Time to 2KB 33.3ms 4.5 MHz 1ms 54 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Overlay Adjustment Overlay Adjustment To ensure a correct position of the overlay to compensate for assembly deviation, the overlay can be adjusted with assistance from the overlay statistics engine: * The overlay statistics engine supports a windowed 8-bin luma histogram, either rowwise (vertical) or column-wise (horizontal). * The example calibration statistics firmware patch can be used to perform an automatic successive-approximation search of a cross-hair target within the scene. * On the first frame, the firmware performs a coarse horizontal search, followed by a coarse vertical search in the second frame. * In subsequent frames, the firmware reduces the region-of-interest of the search to the histogram bins containing the greatest accumulator values, thereby refining the search. * The resultant X, Y location of the cross-hair target can be used to assign a calibration value of offset selected overlay graphic image positions within the output image. * The calibration statistics patch also supports a manual mode, which allows the host to access the raw accumulator values directly. Note: MT9V126_DS Rev. J Pub. 5/15 EN For the overlay calibration feature to work, load the appropriate patch. See Statistics Engine document. 55 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Overlay Adjustment Figure 35: Overlay Calibration The position of the target will be used to determine the calibration value that shifts the X,Y position of adjustable overlay graphics. Unlike the lens distortion correction and perspective correction, the overlay calibration is intended to be applied on a device by device basis "in system," which means after the camera has been installed. ON Semiconductor provides basic programming scripts that may reside in the SPI Flash memory to assist in this effort. MT9V126_DS Rev. J Pub. 5/15 EN 56 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Overlay Character Generator Overlay Character Generator In addition to the four overlay layers, a fifth layer exists for a character generator overlay string. There are a total of: * 16 alphanumeric characters available * 22 characters maximum per line * 16 x 32 pixels with 1-bit color depth Any update to the character generator string requires the string to be passed in its entirety with the Host Command. Character strings have their own control properties aside from the Overlay bitmap properties. Figure 36: Internal Block Diagram Overlay B T 65 6 O verla y L ayer3 R e giste r B u s U ser R egiste rs L ayer2 D a ta B u s D M A /C P U L ayer1 Tim in g co ntrol L ayer0 N u m be r G en era to r ROM B T 65 6 MT9V126_DS Rev. J Pub. 5/15 EN 57 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Overlay Character Generator Character Generator The character generator can be seen as the fifth top layer, but instead of getting the source from RLE data in the memory buffers, it has a predefined 16 characters stored in ROM. All the characters are 1-bit depth color and are sharing the same YCbCr look up table. Figure 37: Example of Character Descriptor 0 Stored in ROM ROM 15 14 0x00 0 0 0x02 0 0 0x04 0 0 0x06 0 0 0x08 0 0 0x0a 0 0 0x0c 0 0 0x0e 0 0 0x10 0 0 0x12 0 0 0x14 0 1 0x16 0 1 0x18 0 1 0x1a 0 1 0x1c 0 1 0x1e 0 1 0x20 0 1 0x22 0 1 0x24 0 1 0x26 0 1 0x28 0 0 0x2a 0 0 0x2c 0 0 0x2e 0 0 0x30 0 0 0x32 0 0 0x34 0 0 0x36 0 0 0x38 0 0 0x3a 0 0 0x3c 0 0 0x3e 0 0 ... 13 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 12 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 11 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 10 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 9 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 8 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 7 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 6 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 5 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 4 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 3 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 It can show a row of up to 22 characters of 16 x 32 pixels resolution (32 x 32 pixels when blended with the BT 656 data). MT9V126_DS Rev. J Pub. 5/15 EN 58 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Overlay Character Generator Character Generator Details Table 27 shows the characters that can be generated. Table 27: Character Generator Details Item Quantity Description 16-bit character 22 Coder for one of these characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, /, (space), :, -, (comma), (period) 1 bpp color 1 Depth of the bit map is 1 bpp It is the responsibility of the user to set up proper values in the character positioning to fit them in the same row (that is one of the reasons that 22 is the maximum number of characters). Note: No error is generated if the character row overruns the horizontal or vertical limits of the frame. Full Character Set for Overlay Figure 38 shows all of the characters that can be generated by the MT9V126. Figure 38: Full Character Set for Overlay 0x0 0x4 0x8 0xC 0x1 0x5 0x9 0xD 0x2 0x6 0xA 0xE 0x3 0x7 0xB 0xF MT9V126_DS Rev. J Pub. 5/15 EN 59 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Modes and Timing Modes and Timing This section provides an overview of the typical usage modes and related timing information for the MT9V126. Composite Video Output The external pin DOUT_LSB0 can be used to configure the device for default NTSC or PAL operation. This and other video configuration settings are available as register settings accessible through the serial interface. NTSC Both differential and single-ended connections of the full NTSC format are supported. The differential connection that uses two output lines is used for low noise or long distance applications. The single-ended connection is used for PCB tracks and screened cable where noise is not a concern. The NTSC format has three black lines at the bottom of each image for padding (which most LCDs do not display). PAL The PAL format is supported with 576 active image rows. NTSC or PAL with External Image Processing The on-chip video encoder and DAC can be used with external data stream input (DIN[7:0] port). Correct NTSC or PAL formatted CCIR656 data is required for correct composite video output. The on-chip overlay may be put on top of the overlay generated by the external overlay generator. Single-Ended and Differential Composite Output The composite output can be operated in a single-ended or differential mode by simply changing the external resistor configuration. For single-ended termination, see Figure 39 on page 60. The differential schematic is shown in Figure 40 on page 61. Figure 39: Single-Ended Termination V DD i = IMINUS i = IPLUS Chip Boundary 75 Single-Ended L0 L2 L1 L = 1uH 75 Terminated Receiver 75 Single-ended L = 1uH C0 C1 C = 330 pF C = 330 pF R 1=75 75 L = 2.2H Single-ended e.g. PCB Track e .g. 75 COAX Typical Values for LC MT9V126_DS Rev. J Pub. 5/15 EN 60 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Modes and Timing Figure 40: Differential Connection--Grounded Termination Parallel Output (DOUT) The DOUT[7:0] port supports both progressive and Interlaced mode. Progressive mode (with FV and LV signal) include raw bayer(8 or 10 bit), YCbCr, RGB. Interlaced mode is CCIR656 compliant. Figure 41 shows the data that is output on the parallel port for CCIR656. Both NTSC and PAL formats are displayed. The blue values in Figure 41 represent NTSC (525/60). The red values represent PAL (625/50). Figure 41: CCIR656 8-Bit Parallel Interface Format for 525/60 (625/50) Video Systems Start of digital line Start of digital active line EAV CODE F F 0 0 0 0 4 4 X Y BLANKING 8 0 1 0 8 0 SAV CODE 1 0 8 0 268 280 1 0 F F 0 0 0 0 4 4 CO -SITED _ CO -SITED _ X C Y B Y C R Next line Y C B Y C R Y C R Y F F Digital video stream 1440 1440 1716 1728 Figure 42 on page 62 shows detailed vertical blanking information for NTSC timing. See Table 28 on page 62 for data on field, vertical blanking, EAV, and SAV states. MT9V126_DS Rev. J Pub. 5/15 EN 61 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Modes and Timing Figure 42: Typical CCIR656 Vertical Blanking Intervals for 525/60 Video System Line 4 Line 1 (V = 1) Blanking Field 1 (F = 0) Odd Line 20 (V = 0) Field 1 Active Video 266 Line 264 (V = 1) Blanking Field 2 (F = 1) Even Line 283 (V = 0) Field 2 Active Video Line 525 (V = 0) H=1 EAV Table 28: H=0 SAV Field, Vertical Blanking, EAV, and SAV States 525/60 Video System Line Number F V H (EAV) H (SAV) 1-3 4-9 20-263 264-265 266-282 283-525 1 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 Figure 43 shows detailed vertical blanking information for PAL timing. See Table 29 on page 63 for data on field, vertical blanking, EAV, and SAV states. MT9V126_DS Rev. J Pub. 5/15 EN 62 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Modes and Timing Figure 43: Typical CCIR656 Vertical Blanking Intervals for 625/50 Video System Line 1 (V = 1) Blanking Line 23 (V = 0) Field 1 (F = 0) Odd Field 1 Active Video Line 311 (V = 1) Blanking Line 336 (V = 0) Field 2 (F = 1) Even Field 2 Active Video Line 624 (V = 1) Blanking Line 625 (V = 1) H =1 EAV Table 29: H= 0 SAV Field, Vertical Blanking, EAV, and SAV States for 625/50 Video System MT9V126_DS Rev. J Pub. 5/15 EN Line Number F V H (EAV) H (SAV) 1-22 23-310 311-312 313-335 336-623 624-625 0 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 63 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Modes and Timing Parallel Input (DIN) The data-in port allows external CCIR656 data to be multiplexed into the NTSC or PAL output data. Figure 44 shows the timing of the data-in (DIN[7:0]) signals. Table 30 describes timing values for the parallel input waveform. Both mode 0 and mode 1 waveforms are supported. Figure 44: Parallel Input Data Timing Waveform Using DIN_CLK t s DIN[7:0] t h D0 D1 D2 D3 D4 D5 D3 D4 D5 DIN _ CLK t DIN _CLK t s DIN[7:0] MODE 0 t h D0 D1 D2 DIN _ CLK t DIN _CLK Table 30: MODE 1 Parallel Input Data Timing Values Using DIN_CLK Name Conditions Min Typical Max Parameter tDIN_CLK Max 100 ppm - 8 8 37 - - - 18.5 18.5 DIN_CLK Period DIN Setup Time DIN Hold Time ts th Note: MT9V126_DS Rev. J Pub. 5/15 EN Setup and hold times are measured with respect to the rising or falling edge of DIN_CLK, which can be programmed by R0x0016[13]. 64 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Modes and Timing Reset and Clocks Reset Power-up reset is asserted or de-asserted with the RESET_BAR pin, which is active LOW. In the reset state, all control registers are set to default values. See "Device Configuration" on page 34 for more details on Auto, Host, and Flash configurations. Soft reset is asserted or de-asserted by the two-wire serial interface program. In softreset mode, the two-wire serial interface and the register bus are still running. All control registers are reset using default values. Clocks The MT9V126 has three primary clocks: * A master clock coming from the EXTCLK signal. * In default mode, a pixel clock (PIXCLK) running at 2 * EXTCLK. In raw Bayer bypass mode, PIXCLK runs at the same frequency as EXTCLK. * DIN_CLK that is associated with the parallel DIN port. When the MT9V126 operates in sensor stand-alone mode, the image flow pipeline clocks can be shut off to conserve power. The sensor core is a master in the system. The sensor core frame rate defines the overall image flow pipeline frame rate. Horizontal blanking and vertical blanking are influenced by the sensor configuration, and are also a function of certain image flow pipeline functions. The relationship of the primary clocks is depicted in Figure 45. The image flow pipeline typically generates up to 16 bits per pixel--for example, YCbCr or 565RGB--but has only an 8-bit port through which to communicate this pixel data. To generate NTSC or PAL format images, the sensor core requires a 27 MHz clock. Figure 45: Primary Clock Relationships EXTCLK Sensor Master Clock Sensor Core Sensor Pixel Clock 10 bits/pixel 1 pixel/clock DIN_CLK Colorpipe 16 bits/pixel 1 pixel/clock Output Interface 16 bits/pixel (TYP) 0.5 pixel/clock MT9V126_DS Rev. J Pub. 5/15 EN 65 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Modes and Timing Floating Inputs The following MT9V126 pins cannot be floated: * DIN_CLK (tie to GND if not used) * SDATA-This pin is bidirectional and should not be floated * FRAME_SYNC * TRST_N Output Data Ordering Table 31: Output Data Ordering in DOUT RGB Mode Mode (Swap Disabled) 565RGB 555RGB 444xRGB x444RGB Byte D7 D6 D5 D4 D3 D2 D1 D0 First Second First Second First Second First Second R7 G4 0 G5 R7 B7 0 G7 R6 G3 R7 G4 R6 B6 0 G6 R5 G2 R6 G3 R5 B5 0 G5 R4 B7 R5 B7 R4 B4 0 G4 R3 B6 R4 B6 G7 0 R7 B7 G7 B5 R3 B5 G6 0 R6 B6 G6 B4 G7 B4 G5 0 R5 B5 G5 B3 G6 B3 G4 0 R4 B4 Note: Table 32: PIXCLK is 54 MHz when EXTCLK is 27 MHz. Output Data Ordering in Sensor Stand-Alone Mode Mode D7 D6 D5 D4 D3 D2 D1 D0 DOUT_LSB1 DOUT_LSB0 10-bit Output B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 Note: MT9V126_DS Rev. J Pub. 5/15 EN PIXCLK is 27 MHz when EXTCLK is 27 MHz. 66 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Modes and Timing I/O Circuitry Figure 46 illustrates typical circuitry used for each input, output, or I/O pad. Figure 46: Typical I/O Equivalent Circuits VDD_IO Input Pad Pad Receiver GND VDD_IO SPI_SDI and RESET_BAR Input Pad Pad Receiver GND VDD_IO Receiver I/O Pad Pad Slew Rate Control GND VDD_IO SCLK and XTAL_IN Input Pad Pad Receiver GND Pad VDD_IO XTAL Output Pad GND Note: MT9V126_DS Rev. J Pub. 5/15 EN All I/O circuitry shown above is for reference only. The actual implementation may be different. 67 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Modes and Timing Figure 47: NTSC Block NTSC Block VDD_DAC DAC_REF Pad ESD Pad DAC_POS Pad DAC_NEG ESD Resistor 4.7k/2.35k ESD GND Note: Figure 48: All I/O circuitry shown above is for reference only. The actual implementation may be different. Serial Interface MT9V126_DS Rev. J Pub. 5/15 EN 68 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Modes and Timing I/O Timing Digital Output By default, the MT9V126 launches pixel data, FV, and LV synchronously with the falling edge of PIXCLK. The expectation is that the user captures data, FV, and LV using the rising edge of PIXCLK. The timing diagram is shown in Figure 49. As an option, the polarity of the PIXCLK can be inverted from the default by programming R0x0016[14]. Figure 49: Digital Output I/O Timing t extclk_period Input EXT C LK O utput PIXC LK t t pixclkf_dout O utput D OUT [7:0] dout_ho t dout_su t fvlv_ho t pixclkf_fvlv O utput F R AM E_VALID LIN E _VALID Table 33: t fvlv_su Parallel Digital Output I/O Timing fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V; VDD_PLL = 2.8V; VDD_DAC = 2.8V; Default slew rate Signal Parameter fextclk EXTCLK Conditions Min Typ Max Unit max 100 ppm - 27 - MHz t extclk_period - 37 - ns Duty cycle 45 50 55 % f pixclk PIXCLK1 - 27 - MHz pixclk_period - 37 - ns t Duty cycle 45 50 55 % t -2 0 2 ns t dout_su 8 - 18.5 ns tdout_ho 8 - 18.5 ns pixclkf_dout DATA[7:0] t pixclkf_fvlv FV/LV -2 0 2 ns tfvlv_su 8 - 18.5 ns tfvlv_ho 8 - 18.5 ns Note: MT9V126_DS Rev. J Pub. 5/15 EN PIXCLK can be inverted from the default by programming R0x0016[14]. 69 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Modes and Timing Slew Rate Table 34: Slew Rate for PIXCLK and DOUT f EXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; V_PIX = 2.8V; VDD_PLL = 2.8V; VDD_DAC = 2.8V; T = 25C; CLOAD = 40 pF PIXCLK DOUT[7:0] R0x30 [10:8] Typical Rise Time Typical Fall Time R0x30 [2:0] Typical Rise Time Typical Fall Time Unit 000 001 010 011 100 101 110 111 6.5 4.8 3.9 3.7 3.6 3.5 3.4 3.3 6.3 4.6 3.8 3.7 3.6 3.5 3.4 3.3 000 001 010 011 100 101 110 111 6.5 4.8 3.9 3.7 3.6 3.5 3.4 3.3 6.3 4.6 3.8 3.7 3.6 3.5 3.4 3.3 ns ns ns ns ns ns ns ns Figure 50: Slew Rate Timing 90% 10% PIXCLK tr is e tfa ll 90% D OUT 10% tr is e MT9V126_DS Rev. J Pub. 5/15 EN 70 tfa ll (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Modes and Timing Configuration Timing During start-up, the Dout_LSB0, LV and FV are sampled. Setup and hold timing for the RESET_BAR signal with respect to DOUT_LSB0, LV, and FV are shown in Figure 51 and Table 35. These signals are sampled once by the on-chip firmware, which yields a long tHold time. Figure 51: Configuration Timing RESET_BAR t SETUP DOUT_LSB0 FRAME_VALID LINE_VALID Table 35: t HOLD Valid Data Configuration Timing Signal DOUT_LSB0, FRAME_VALID, LINE_VALID MT9V126_DS Rev. J Pub. 5/15 EN Parameter Min Typ Max Unit tSETUP 0 s tHOLD 50 s 71 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Modes and Timing Figure 52: Power Up Sequence VDD_PLL VDD_DAC (2.8) t0 VAA_PIX VAA (2.8) t1 VDD_IO (2.8) t2 VDD (1.8) tx EXTCLK RESET_BAR t3 Hard Reset Notes: Table 36: t4 t5 Internal (NTSC/PAL) Initialization Patch Config SPI or Host Streaming 1. RESET_BAR may not exceed VDD_IO + 0.3V. 2. The 2.8V plane (VAA, VAA_PIX, VDD_PLL, VDD_DAC, VDD_IO) must remain at a higher voltage than the 1.8V core voltage at all times. Power Up Sequence Definition Symbol Minimum Typical Maximum Unit VDD_PLL to VAA/VAA_PIX VAA/VAA_PIX to VDD_IO VDD_IO to VDD Xtal settle time Hard Reset Internal Initialization Patch Load (SPI or I2C) t0 t1 t2 tx t3 t4 t5 0 0 0 - 102 50 - - - - 301 - - 4003 - - - - - - - S S S mS Clock cycle mS mS Notes: MT9V126_DS Rev. J Pub. 5/15 EN 1. Xtal settling time is component-dependent (Xtal, Oscillator, etc) and usually takes about 10mS ~100mS. 2. Hard reset time is the minimum time required after power rails are settled. Ten clock cycles are required for the sensor itself, assuming all power rails are settled. In a circuit where Hard reset is performed by the RC circuit, then the RC time must include the all power rail settle time and Xtal 3. This is required to load necessary patches via Flash mode (SPI) or Host mode (two-wire serial interface). Loading time varies depending on the number of patches and bus speed. 72 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Modes and Timing Figure 53: Power Down Sequence VDD (1.8) t0 VDD_IO (2.8) t1 VAA_PIX VAA (2.8) t2 VDD_PLL VDD_DAC (2.8) EXTCLK t3 Power Down until next Power Up Cycle Table 37: Power Down Sequence Definition Symbol Minimum Typical Maximum Unit VDD to VDD_IO VDD_IO to VAA/VAA_PIX VAA/VAA_PIX to VDD_PLL/DAC Power Down until Next Power Up Time t0 t1 t2 t3 0 0 0 1001 - - - - - - - - S S S ms (1) t3 is required between power down and next power up time, all decoupling caps from regulators must completely discharged before next power up. Figure 54: FRAME_SYNC to FRAME_VALID/LINE_VALID t FRAME_SYNC FRAME_SYNC t FRMSYNH_FVH FRAME_VALID LINE_VALID MT9V126_DS Rev. J Pub. 5/15 EN 73 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Modes and Timing Table 38: FRAME_SYNC to FRAME_VALID/LINE_VALID Parameters Parameter Name Conditions Min Typ Max Unit FRAME_SYNC to FV/LV t FRAME_SYNC tFRMSYNC_FVH Auto Config mode 4 30 - - ms ms Figure 55: t FRAMESYNC Reset to SPI Access Delay R ESET_BAR t RSTH_CSL SPI_CS_N Figure 56: Reset to Serial Access Delay RESET_BAR tRSTH_SDATAL SDATA Figure 57: Reset to AE/AWB Image RESET_BAR VIDEO First Frame t Overlay from Flash RSTH_FVL t RSTH_OVL t MT9V126_DS Rev. J Pub. 5/15 EN 74 AE/AWB settled RSTH_AEAWB (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Modes and Timing Table 39: RESET_BAR Delay Parameters Parameter Power up delay 2.8V to 1.8V RESET_BAR HIGH to SPI_CS_N LOW RESET_BAR HIGH to SDATA LOW RESET_BAR HIGH to FRAME_VALID RESET_BAR HIGH to first Overlay RESET_BAR HIGH to AE/AWB settled MT9V126_DS Rev. J Pub. 5/15 EN Name Condition tRSTH_CSL tRSTH_SDATAL tRSTH_FVL tRSTH_OVL tRSTH_AEAWB 75 Min Typ Max Unit 0.1 18 1.8 235 235 - - - - - - 400 - - - - - - ms ms ms ms ms ms (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Electrical Specifications Electrical Specifications Figure 58: SPI Output Timing tCS_SCLK SPI_CS_N SPI_SCLK SPI_SDI tsu tSCLK_SDO SPI_SDO Table 40: SPI Data Setup and Hold Timing Parameter Description Min Typ Max Units fSPI_SCLK SPI_SCLK Frequency Setup time Hold time Delay from falling edge of SPI_CS_N to rising edge of SPI_SCLK 1.6875 - 4.5 - - 230 18 110 110 - MHz ns ns ns tsu tSCLK_SDO tCS_SCLK MT9V126_DS Rev. J Pub. 5/15 EN 76 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Electrical Specifications Caution Table 41: Stresses greater than those listed in Table 41 may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Absolute Maximum Ratings Rating Symbol VDD Parameter Min Max Unit Digital power (1.8V) -0.3 2.4 V I/O power (2.8v) -0.3 4 V VAA VAA Analog power (2.8V) -0.3 4 V VAA_PIX Pixel array power (2.8v) -0.3 4 V VDD_PLL PLL power (2.8V) -0.3 4 V VDD_DAC DAC power (2.8V) -0.3 4 V VDD_IO DC Input Voltage -0.3 VDD_IO+0.3 V VOUT DC Output Voltage -0.3 VDD_IO+0.3 V TSTG Storage temperature -50 150 C VIN Table 42: Electrical Characteristics and Operating Conditions Parameter1 Core digital voltage (VDD) Condition Min Typ Max Unit - 1.7 1.8 1.9 V IO digital voltage (VDD_IO) - 2.66 2.8 2.94 V Video DAC voltage (VDD_DAC) - 2.66 2.8 2.94 V PLL Voltage (VDD_PLL) - 2.66 2.8 2.94 V Analog voltage (VAA) - 2.66 2.8 2.94 V - 2.66 2.8 2.94 V 10 A -40 +105 C -40 +85 C -50 +150 C Pixel supply voltage (VAA_PIX) Leakage current EXTCLK: HIGH or LOW Imager operating temperature2 - Functional operating temperature3 Storage temperature Notes: MT9V126_DS Rev. J Pub. 5/15 EN - 1. VAA and VAA_PIX must all be at the same potential to avoid excessive current draw. Care must be taken to avoid excessive noise injection in the analog supplies if all three supplies are tied together. 2. The imager operates in this temperature range, but image quality may degrade if it operates beyond the functional operating temperature range. 3. Image quality is not guaranteed at temperatures equal to or greater than this range. 77 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Electrical Specifications Table 43: Video DAC Electrical Characteristics-Single-Ended Mode f EXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V; VDD_PLL = 2.8V; VDD_DAC = 2.8V Parameter Resolution DNL INL Output local load Output voltage Output current Supply current DAC_REF R DAC_REF Table 44: Condition Min Typ Max Unit Output pad (DAC_POS) Unused output (DAC_NEG) Single-ended mode, code 000h Single-ended mode, code 3FFh Single-ended mode, code 000h Single-ended mode, code 3FFh Estimate DAC Reference DAC Reference - - - - - - - - - - - - 10 0.2 0.7 75 0 .02 1.30 0.26 17.33 1.15 +/-0.2 4.7 0.4 3.5 25.0 - bits bits bits V V mA mA mA V K Video DAC Electrical Characteristics-Differential Mode fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V; VDD_PLL = 2.8V; VDD_DAC = 2.8V Parameter DNL INL Output local load Output voltage Output current Differential output, midlevel Supply current DAC_REF R DAC_REF MT9V126_DS Rev. J Pub. 5/15 EN Condition Differential mode per pad (DAC_POS and DAC_NEG) Differential mode, code 000h, pad dacp Differential mode, code 000h, pad dacn Differential mode, code 3FFh, pad dacp Differential mode, code 3FFH, pad dacn Differential mode, code 000h, pad dacp Differential mode, code 000h, pad dacn Differential mode, code 3FFh, pad dacp Differential mode, code 3FFH, pad dacn Estimate DAC Reference DAC Reference 78 Min Typ Max Unit - - - 0.2 0.8 37.5 0.25 2.5 - Bits Bits - - - - - - - - - .02 1.30 1.30 .02 .53 34.7 34.7 .53 0.65 - - - - - - - - - V V V V mA mA mA mA V - - - 1.15 +/-0.2 2.35 50 mA V K (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Electrical Specifications Table 45: Digital I/O Parameters TA = Ambient = 25C; All supplies at 2.8V Signal Parameter All Outputs Definitions Min 2.8V, 30pF load 2.8V, 5pF load Load capacitance Typ Max Unit 1 - 30 pF - - VDD_IO - - - V/ns V/ns V VOH Output high voltage - - - VOL Output low voltage -0.3 - - V - - 8 mA Output signal slew IOH VIH Input high voltage VDD = 2.8V, VOH = 2.4V VDD = 2.8V, VOL = 0.4V VDD = 2.8V VIL Input low voltage VDD = 2.8V IIN Input leakage current -2 - 2 A Input signal capacitance - 3.5 - pF Output high current IOL All Inputs Condition Output low current Signal CAP Notes: MT9V126_DS Rev. J Pub. 5/15 EN - - 8 mA 0.7 * VDD_IO - VDD_IO + 0.3 V -0.3 - 0.3 * VDD_IO V 1. All inputs are protected and may be active when All supplies (2.8V and 1.8V) are turned off. 79 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Electrical Specifications Power Consumption, Operating Mode Table 46: Power Consumption - Condition 1 f EXTCLK = 27 MHz; VDD = 1.8V; VDD _IO = 2.8V; VAA =2.8V;VAA_PIX=2.8V; VDD _PLL = 2.8V; VDD _DAC = 2.8V Power Plane Supply VDD VDD_IO VAA VAA_PIX VDD_DAC VDD_PLL 1.8 2.8 2.8 2.8 2.8 2.8 Condition 1 Parallel off Single 75(1) Total Typ Power Max Power Unit 140.4 4.2 89.6 1.96 39.2 13.44 288.8 162 8.4 112 5.04 44.8 16.8 349.04 mW mW mW mW mW mW mW Analog output uses single-ended mode: DAC_Pos = 75, DAC_Neg = open, parallel output is disabled. Table 47: Power Consumption - Condition 2 fEXTCLK = 27 MHz; VDD = 1.8V; VDD _IO = 2.8V; VAA =2.8V;VAA_PIX=2.8V; VDD _PLL = 2.8V; VDD _DAC = 2.8V Power Plane Supply VDD VDD_IO VAA VAA_PIX VDD_DAC VDD_PLL 1.8 2.8 2.8 2.8 2.8 2.8 Condition 2 Parallel on Single 75(1) Total Typ Power Max Power Unit 140.4 42 89.6 1.96 39.2 13.44 326.6 162 50.4 112 5.04 44.8 16.8 391.04 mW mW mW mW mW mW mW Analog output uses single-ended mode: DAC_Pos = 75, DAC_Neg = open, parallel output is enabled. MT9V126_DS Rev. J Pub. 5/15 EN 80 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Electrical Specifications NTSC Signal Parameters Table 48: NTSC Signal Parameters f EXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V; VDD_PLL = 2.8V; VDD_DAC = 2.8V Parameter Conditions Min Typ Max Units Line Frequency 15734.25 15734.27 15734.28 Hz Field Frequency 59.94 59.94 59.94 Hz Sync Rise Time 148 148 148 ns Sync Fall Time 148 148 148 ns Sync Width 4.74 4.74 4.74 s Sync Level 38 40 42 IRE 2, 4 2, 4 Burst Level 38 40 42 IRE Sync to Setup (with pedestal off) 9.44 9.44 9.44 s Sync to Burst Start 5.33 5.33 5.33 s Front Porch 1.33 1.33 1.33 Notes s Black Level 7.5 IRE 1, 2, 4 White Level 100 IRE 1, 2, 3, 4 Notes: MT9V126_DS Rev. J Pub. 5/15 EN 1. 2. 3. 4. Black and white levels are referenced to the blanking level. NTSC convention standardized by the IRE (1 IRE = 7.14mV). Encoder contrast setting R0x011 = R0x001 = 0. DAC ref = 2.35k, load = 37.5 81 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Electrical Specifications Figure 59: Video Timing A D E C B J F K H Table 49: G H Video Timing A B C D E F G H J K MT9V126_DS Rev. J Pub. 5/15 EN Signal NTSC 27 MHz PAL 27 MHz Units H Period Hsync to burst burst Hsync to Signal Video Signal Front Hsync Period Sync rising/falling edge Back overscan (BOS) Front overscan (FOS) 1716 144 63 255 1423 36 128 4 9 8 1728 153 66 279 1413 39 128 4 14 13 Clocks Clocks Clocks Clocks Clocks Clocks Clocks Clocks Clocks Clocks 82 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Electrical Specifications Figure 60: Equivalent Pulse L I J K Table 50: K Equivalent Pulse I J K L MT9V126_DS Rev. J Pub. 5/15 EN Signal NTSC 27 MHz PAL 27 MHz Units H/2 Period Pulse width Pulse rising/falling edge Signal to pulse 858 64 4 38 864 64 4 41 Clocks Clocks Clocks Clocks 83 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Electrical Specifications Figure 61: V Pulse M O N P Table 51: P V Pulse M N O P MT9V126_DS Rev. J Pub. 5/15 EN Signal NTSC 27 MHz PAL 27 MHz Units H/2 Period Pulse width V pulse interval Pulse rising/falling edge 858 730 128 4 864 736 128 4 Clocks Clocks Clocks Clocks 84 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Electrical Specifications Two-Wire Serial Bus Timing Figure 62 and Table 52 describe the timing for the two-wire serial interface. Figure 62: Two-Wire Serial Bus Timing Parameters SDATA tLOW tf tSU;DAT tr tf tHD;STA tr tBUF SCLK tHD;STA S Table 52: tHD;DAT tHIGH tSU;STA tSU;STO Sr P S Two-Wire Serial Bus Characteristics fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V; VDD_PLL = 2.8V; VDD_DAC = 2.8V; TA = 25C Standard-Mode Parameter SCLK Clock Frequency Fast-Mode Symbol Min Max Min Max Unit fSCL 0 100 0 400 KHz tHD;STA 4.0 - 0.6 - S Hold time (repeated) START condition. After this period, the first clock pulse is generated LOW period of the SCLK clock tLOW 4.7 - 1.3 - S HIGH period of the SCLK clock tHIGH 4.0 - 0.6 - S Set-up time for a repeated START condition tSU;STA 4.7 - 0.6 - S Data hold time: tHD;DAT 04 3.455 06 0.95 S Data set-up time tSU;DAT - 1006 - nS 300 nS 300 nS 250 Rise time of both SDATA and SCLK signals tr - 1000 20 + 0.1Cb7 Fall time of both SDATA and SCLK signals t f - 300 20 + 0.1Cb7 tSU;STO 4.0 - 0.6 - S tBUF 4.7 - 1.3 - S Cb - 400 - 400 pF CIN_SI - 3.3 - 3.3 pF Set-up time for STOP condition Bus free time between a STOP and START condition Capacitive load for each bus line Serial interface input pin capacitance SDATA max load capacitance SDATA pull-up resistor Notes: MT9V126_DS Rev. J Pub. 5/15 EN CLOAD_SD - 30 - 30 pF RSD 1.5 4.7 1.5 4.7 K This table is based on I2C standard (v2.1 January 2000). Philips Semiconductor. Two-wire control is I2C-compatible. All values referred to VIHmin = 0.9 VDD and VILmax = 0.1VDD levels. Sensor EXCLK = 27 MHz. A device must internally provide a hold time of at least 300 ns for the SDATA signal to bridge the undefined region of the falling edge of SCLK. 5. The maximum tHD;DAT has only to be met if the device does not stretch the LOW period (tLOW) of the SCLK signal. 1. 2. 3. 4. 85 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Spectral Characteristics 6. A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement t SU;DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCLK signal. If such a device does stretch the LOW period of the SCLK signal, it must output the next data bit to the SDATA line tr max + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the SCLK line is released. 7. Cb = total capacitance of one bus line in pF. Spectral Characteristics Figure 63: Quantum Efficiency 60 B lu e G re e n (B ) G re e n (R) 50 Quantum Efficiency (%) Re d 40 30 20 10 0 350 450 550 650 750 850 950 1050 1150 Wavelength (nm) MT9V126_DS Rev. J Pub. 5/15 EN 86 (c)Semiconductor Components Industries, LLC,2015. 63-Ball iBGA Package Outline Drawing Figure 64: MT9V126_DS Rev. J Pub. 5/15 EN Package and Die Dimensions (c)Semiconductor Components Industries, LLC,2015 MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Spectral Characteristics 87 MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Revision History Revision History Rev. J. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4/17/15 * Updated "Ordering Information" on page 3 Rev. H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4/1/15 * Converted to ON Semiconductor template * Removed Confidential marking Rev. G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5/17/12 * Updated trademarks * Applied updated Aptina template Rev. F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7/15/10 * Updated Figure 2: "System Block Diagram," on page 12 * Added paragraph after Figure 3: "Using a Crystal Instead of an External Oscillator," on page 13 * Updated Figure 19: "External Overlay System Block Diagram," on page 32 * Updated Figure 39: "Single-Ended Termination," on page 60 * Updated Table 36, "Power Up Sequence," on page 72 * Updated Table 37, "Power Down Sequence," on page 73 * Updated Table 48, "NTSC Signal Parameters," on page 81 Rev. E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6/22/10 * Updated capacitor value in "Crystal Usage" on page 13 * Updated Note 4 in Table 48, "NTSC Signal Parameters," on page 81 * Updated Figure 62: "Two-Wire Serial Bus Timing Parameters," on page 85 * Updated Table 52, "Two-Wire Serial Bus Characteristics," on page 85 Rev. D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4/7/10 * Updated values for Sensitivity, Signal-to-noise ratio, and Pixel dynamic range in Table 2, "Key Parameters (continued)," on page 2 * Updated temperature range for 1MB Flash in Table 14, "SPI Flash Devices," on page 36 * Deleted subheading under "Parallel Output (DOUT)" on page 61 and updated first paragraph under it Rev. C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6/26/09 * Updated to Production status * Updated "Features" on page 1 * Updated Table 1, "Key Parameters," on page 1 and Table 2, "Key Parameters (continued)," on page 2 * Updated Table 3, "Available Part Numbers," on page 3 * Updated "Crystal Usage" on page 13 * Updated Table 4, "Pin Descriptions," on page 14 * Updated "Pin Assignments" on page 16 * Updated Table 6, "Reset/Default State of Interfaces," on page 16 * Updated "Pixel Array Structure" on page 18 * Updated "Sensor Pixel Array" on page 20 * Updated "Positional Gain Adjustments (PGA)" on page 25 * Deleted 1D from "Color Correction and Aperture Correction" on page 26 MT9V126_DS Rev. J Pub. 5/15 EN 88 (c)Semiconductor Components Industries, LLC,2015. MT9V126: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor Revision History * * * * * * * * * * * * * * * Deleted section on "Image Scaling" Updated "Usage Modes" on page 30 Updated Figure 19: "External Overlay System Block Diagram," on page 32 Moved register tables and section on "How to Access Registers and Variables" to separate document Updated "Command Flow" on page 39 Updated Figure 28: "Single Write to Random Location," on page 47 Updated "Integrated Lens Distortion Correction" on page 49 Updated Table 23, "TX Manager Host Commands," on page 43 Updated "Overlay Capability" on page 53 Updated Figure 34: "Memory Partitioning," on page 54 Updated "Overlay Adjustment" on page 55 Changed "Overlay Number Generator" to "Overlay Character Generator," on page 57 Updated Table 30, "Parallel Input Data Timing Values Using Din_CLK," on page 64 Updated Table 33, "Parallel Digital Output I/O Timing," on page 69 Updated Table 41, "Absolute Maximum Ratings," on page 77 Rev. B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12/2/08 * Added title to Table 66, "Power-Up Sequence Parameters," on page 132 and added units for tVDD_RESET and tEXTCLK_RESET * Added typical value for leakage current for EXTCLK at VIN = 0V in Table 72, "Digital I/O Parameters," on page 138 Rev. A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11/21/08 * Initial release ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/ Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. MT9V126_DS Rev. J Pub. 5/15 EN 89 (c)Semiconductor Components Industries, LLC,2015 .